Đặt vào hai đầu đoạn mạch RLC (L thay đổi được) mắc nối tiếp một điện áp \(u = {U_0}\cos \omega t(V)\) . Khi thay đổi độ tự cảm đến giá trị \({L_1} = \frac{1}{\pi }H\) thì cường độ dòng điện hiệu dụng qua đoạn mạch đạt giá trị cực đại, lúc đó công suất của đoạn mạch bằng 200W. Khi \(L = {L_2} = \frac{2}{\pi }H\) thì điện áp hiệu dụng giữa hai đầu cuộn cảm đạt cực đại bằng 200V. Tính giá trị điện dung của tụ.
Quảng cáo
Trả lời:
Phương pháp:
+ Khi mạch xảy ra cộng hưởng điện: \[{Z_L} = {Z_C}\]
+ Công suất tiêu thụ của đoạn mạch: \(P = \frac{{{U^2}R}}{{{Z^2}}} = \frac{{{U^2}R}}{{{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}}}\)
+ Cường độ dòng điện hiệu dụng: \(I = \frac{U}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }}\)
+ L thay đổi để \({U_{L\max }}:\left\{ {\begin{array}{*{20}{l}}{{Z_L} = \frac{{{R^2} + Z_C^2}}{{{Z_C}}}}\\{{U_{L\max }} = \frac{{U\sqrt {{R^2} + Z_C^2} }}{R}}\end{array}} \right.\)
Cách giải:
+ Khi \({L_1} = \frac{1}{\pi } \Rightarrow {I_{\max }} \Rightarrow {Z_{L1}} = {Z_C} \Rightarrow P = \frac{{{U^2}}}{R} = 200\) (*)
+ Khi \({L_2} = \frac{2}{\pi } = 2{L_1} \Rightarrow {Z_{L2}} = 2{Z_{L1}}\)
\({U_{L\max }} \Rightarrow {Z_{L2}} = \frac{{{R^2} + Z_C^2}}{{{Z_C}}} \Leftrightarrow 2.{Z_{L1}} = \frac{{{R^2} + Z_{L1}^2}}{{{Z_{L1}}}} \Rightarrow {Z_{L1}} = R = {Z_C}\)
\({U_{L\max }} = \frac{{U\sqrt {{R^2} + Z_C^2} }}{R} \Leftrightarrow 200 = \frac{{U\sqrt {{R^2} + {R^2}} }}{R} \Rightarrow U = 100\sqrt 2 V\)
Thay vào (*) ta có:
Lại có
Chọn D.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp:
Công thức liên hệ giữa tần số và bước sóng: \(f = \frac{c}{\lambda } \Rightarrow f - \frac{1}{\lambda }\)
Bước sóng theo thứ tự tăng dần: Tia tử ngoại, ánh sáng nhìn thấy, tia hồng ngoại
Cách giải:
Bảng thang sóng điện từ:

Có \(f = \frac{c}{\lambda } \Rightarrow f - \frac{1}{\lambda }\)
Tần số các sóng điện từ theo thứ tự giảm dần là: Tia tử ngoại, ánh sáng nhìn thấy, tia hồng ngoại.
Chọn A.
Lời giải
Phương pháp:
+ Bước sóng:
+ Điều kiện có cực đại giao thoa: \({d_2} - {d_1} = k\lambda ;k \in Z\)
Cách giải:
Phương trình dao động của hai nguồn:
\({u_A} = {u_B} = 5\cos \left( {20\pi t + \frac{{3\pi }}{4}} \right)({\rm{cm}};s)\)
Tốc độ truyền sóng: \(v = 0,2\;{\rm{m}}/{\rm{s}}\)
Bước sóng:
Bài cho \(AB = 30\;{\rm{cm}} \Rightarrow {\rm{AB}} = 15\lambda \)
Áp dụng định lí Pitago trong tam giác vuông ABC ta có: \(A{C^2} = A{B^2} + B{C^2} \Rightarrow A{B^2} = A{C^2} - B{C^2}\)
Mà:
Mặt khác: \({d_2} - {d_1} = k\lambda \left( 2 \right)\) (cực đại)
Từ (1) và (2) \( \Rightarrow {d_2} + {d_1} = \frac{{225}}{k}\lambda \)
Để cực đại cùng pha thì k và \(\frac{{225}}{k}\) hoặc cùng chẵn hoặc cùng lẻ, ở đây chỉ có k lẻ thỏa mãn.
Lại có: \({d_2} + {d_1} > 15\lambda \) (tổng hai cạnh bất kì của một tam giác luôn lớn hơn cạnh còn lại)
Lập bảng tìm các giá trị của k thỏa mãn:
k |
1 |
3 |
5 |
9 |
225 |
75 |
45 |
25 |
Để gần B nhất thì \({\left( {{d_2} + {d_1}} \right)_{\min }} \Leftrightarrow {\left( {\frac{{225}}{k}\lambda } \right)_{\min }} \Leftrightarrow {k_{\max }} = 9\)
Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.