Câu hỏi:
18/05/2022 255
Một vệ tinh địa tĩnh B (nhân tạo) bay trên quỹ đạo Trái Đất. Cho biết khối lượng và bán kính của Trái Đất lần lượt là \(M = {6,0.10^{24}}\;{\rm{kg}};R = 6400\;{\rm{km}}\), hằng số hấp dẫn \(G = {6,67.10^{ - 11}}{\rm{N}}{{\rm{m}}^2}/{\rm{k}}{{\rm{g}}^2},\) tốc độ ánh sáng trong chân không, bỏ qua sự ảnh hưởng của không khí đối với sự truyền sóng điện từ. Trạm phát sóng vô tuyến A đặt tại một điểm trên mặt đất ở đường Xích đạo phát sóng hướng về phía vệ tinh địa tĩnh B ở thẳng đứng ngay trên đầu của nó. Khi vệ tinh B nhận được tín hiệu từ trạm phát A thì sau 0,500 s vệ tinh B phát sóng trở về lại Trái Đất. Gọi Δt là thời gian từ khi thông tin từ trạm phát sóng A đến vệ tinh địa tĩnh B rồi đến trạm thu sóng C ở trên mặt đất, sao cho C đặt trên cùng một đường kinh tuyến với A và xa A nhất. Giá trị của Δt gần nhất với giá trị nào sau đây?
Quảng cáo
Trả lời:
Phương pháp:
Vệ tinh địa tĩnh bay trên quỹ đạo Trái Đất có cùng chu kì với chu kì tự quay của Trái Đất
Gia tốc trọng trường tại độ cao h: \(g = \frac{{GM}}{{{{(R + h)}^2}}}\)
Tần số góc:
Thời gian sóng điện từ truyền trong không gian: \(t = \frac{s}{c}\)
Cách giải:
Ta có hình vẽ:

Vệ tinh ở độ cao h so với mặt đất
Gia tốc chuyển động của vệ tinh là: \(g = \frac{{GM}}{{{{(R + h)}^2}}}\)
Tần số góc chuyển động của vệ tinh là:
Vệ tinh chuyển động với chu kig bằng chu kì tự quay quanh trục của Trái Đất, ta có:
\(T = \frac{{2\pi \sqrt {{{(R + h)}^3}} }}{{\sqrt {GM} }} = 86400 \Rightarrow h \approx {35897.10^3}(\;{\rm{m}})\)
Thời gian sóng truyền từ trạm phát A đến vệ tinh là: \({t_1} = \frac{h}{c}\)
Trạm thu C đặt trên cùng một đường kinh tuyến với A và cách A xa nhất
→ C nằm tại 1 trong 2 cực của Trái Đất
Khoảng cách từ vệ tinh tới trạm thu C là: \(l = \sqrt {{{(R + h)}^2} + {R^2}} \)
Thời gian sóng truyền từ vệ tinh tới trạm thu C là: \({t_2} = \frac{l}{c} = \frac{{\sqrt {{{(R + h)}^2} + {R^2}} }}{c}\)
Thời gian tín hiệu truyền từ trạm A đến vệ tinh rồi đến trạm thu C là:
\(\Delta t = {t_1} + 0,5 + {t_2} = \frac{h}{c} + 0,5 + \frac{{\sqrt {{{(R + h)}^2} + {R^2}} }}{c} = 0,5 + \frac{{h + \sqrt {{{(R + h)}^2} + {R^2}} }}{c}\)
\( \Rightarrow \Delta t = 0,5 + \frac{{{{35897.10}^3} + \sqrt {{{\left( {{{64.10}^5} + {{35897.10}^3}} \right)}^2} + {{\left( {{{64.10}^5}} \right)}^2}} }}{{{{3.10}^8}}} \approx 0,762(s)\)
→ Giá trị ∆t gần nhất với giá trị 0,759 s
Chọn B.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Vật lí (có đáp án chi tiết) ( 38.000₫ )
- 1000 câu hỏi lí thuyết môn Vật lí (Form 2025) ( 45.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp:
Sử dụng lý thuyết đường sức điện
Cách giải:
Qua mỗi điểm trong điện trường ta chỉ có thể vẽ được một đường sức điện → A sai
Các đường sức điện không bao giờ cắt nhau → B đúng
Nơi nào điện trường mạnh hơn thì nơi đó đường sức điện được vẽ mau hơn → C sai
Các đường sức điện xuất phát từ các điện tích dương và tận cùng ở các điện tích âm → D sai
Chọn B.
Lời giải
Phương pháp:
Định luật bảo toàn năng lượng điện từ: \({{\rm{W}}_d} = {{\rm{W}}_t} \Rightarrow \frac{1}{2}CU_0^2 = \frac{1}{2}LI_0^2\)
Công thức độc lập với thời gian: \(\frac{{{q^2}}}{{q_0^2}} + \frac{{{i^2}}}{{I_0^2}} = 1\)
Chu kì dao động riêng của mạch: \(T = 2\pi \sqrt {LC} \)
Cách giải:
Áp dụng định luật bảo toàn năng lượng điện từ trong mạch, ta có:
\({{\rm{W}}_{d{\rm{max}}}} = {{\rm{W}}_{t\max }} \Rightarrow \frac{1}{2}{\rm{CU}}_0^2 = \frac{1}{2}LI_0^2 \Rightarrow I_0^2 = \frac{{CU_0^2}}{L} = \frac{{C{{.12}^2}}}{{{{9.10}^{ - 3}}}} = 16000{\rm{C}}\)
Áp dụng công thức độc lập với thời gian, ta có:
Chu kì dao động riêng của mạch là:
Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.