Câu hỏi:

18/05/2022 554

Đoạn mạch AB gồm hai đoạn mạch AM và MB mắc nối tiếp. Đoạn AM gồm điện trở thuần \({R_1} = 40\Omega \) mắc nối tiếp với tụ điện có điện dung  \(C = \frac{{{{10}^{ - 3}}}}{{4\pi }}F\), đoạn mạch MB gồm điện trở thuần R2 mắc với cuộn thuần cảm. Đặt vào A, B điện áp xoay chiều có giá trị hiệu dụng và tần số không đổi thì điện  áp tức thời ở hai đầu đoạn mạch AM và MB lần lượt là: \({u_{AM}} = 50\sqrt 2 \cos \left( {100\pi t - \frac{{7\pi }}{{12}}} \right)(V)\) và  \({u_{MB}} = 150\cos 100\pi t(V).\) Công suất của đoạn mạch MB là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp: 

Dung kháng của tụ điện: \({Z_c} = \frac{1}{{\omega C}}\)

Cường độ dòng điện hiệu dụng: \(I = \frac{U}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }}\)  

Độ lệch pha giữa điện áp hai đầu đoạn mạch và cường độ dòng điện: tanφ =ZL-ZCR  viφ =φu-φi

Công suất tiêu thụ của đoạn mạch: \(P = UI\cos \varphi \)

Cách giải: 

Dung kháng của tụ điện là: ZC=1ωC=1100π 10-34π=40(Ω)

Cường độ dòng điện trong mạch là: 

\(I = \frac{{{U_{MM}}}}{{\sqrt {R_1^2 + Z_C^2} }} = \frac{{50}}{{\sqrt {{{40}^2} + {{40}^2}} }} = \frac{5}{{4\sqrt 2 }}(A)\)
Độ lệch pha giữa điện áp hai đầu đoạn mạch AM và cường độ dòng điện là:

tanφAM=-ZCR1=-4040= -1φAM= -π4

φuAM-φi= -π4φi=φuAM+π4= -7π12+π4= -π3(rad)

φMB=φuMB-φi=0-(-π3)=π3(rad)

Công suất tiêu thụ của đoạn mạch MB là: 

\({P_{MB}} = {U_{MB}}.I.\cos {\varphi _{MB}} = \frac{{150}}{{\sqrt 2 }} \cdot \frac{5}{{4\sqrt 2 }} \cdot \cos \frac{\pi }{3} = 46,875(\;{\rm{W}}) \approx 46,9(\;{\rm{W}})\)

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Phương pháp: 

Sử dụng lý thuyết đường sức điện 

Cách giải: 

Qua mỗi điểm trong điện trường ta chỉ có thể vẽ được một đường sức điện → A sai

Các đường sức điện không bao giờ cắt nhau → B đúng 

Nơi nào điện trường mạnh hơn thì nơi đó đường sức điện được vẽ mau hơn → C sai

Các đường sức điện xuất phát từ các điện tích dương và tận cùng ở các điện tích âm → D sai

Chọn B. 

Lời giải

Phương pháp: 

Định luật bảo toàn năng lượng điện từ: \({{\rm{W}}_d} = {{\rm{W}}_t} \Rightarrow \frac{1}{2}CU_0^2 = \frac{1}{2}LI_0^2\)

Công thức độc lập với thời gian:  \(\frac{{{q^2}}}{{q_0^2}} + \frac{{{i^2}}}{{I_0^2}} = 1\)

Chu kì dao động riêng của mạch: \(T = 2\pi \sqrt {LC} \)

Cách giải: 

Áp dụng định luật bảo toàn năng lượng điện từ trong mạch, ta có:

\({{\rm{W}}_{d{\rm{max}}}} = {{\rm{W}}_{t\max }} \Rightarrow \frac{1}{2}{\rm{CU}}_0^2 = \frac{1}{2}LI_0^2 \Rightarrow I_0^2 = \frac{{CU_0^2}}{L} = \frac{{C{{.12}^2}}}{{{{9.10}^{ - 3}}}} = 16000{\rm{C}}\)

Áp dụng công thức độc lập với thời gian, ta có: 

q2q02+i2I02=1q2C2U02+i2I02=1(24.10-9)2C2.122+(43 10-3)216000C=1

[1C=25.107C=4.10-9(F){1C= -1.109(loai)
Chu kì dao động riêng của mạch là: 

T=2πLC =2π9.10-34.10-9 =12π 10-6(s)=12π(μs)

Chọn A. 

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP