Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
A. x + y > 3;
B. x2 + y2 ≤ 4;
C. (x – y)(3x + y) ≥ 1;
D. y3 – 2 ≤ 0.
Bất phương trình nào sau đây là bất phương trình bậc nhất hai ẩn?
A. x + y > 3;
B. x2 + y2 ≤ 4;
C. (x – y)(3x + y) ≥ 1;
D. y3 – 2 ≤ 0.
Câu hỏi trong đề: Bài tập ôn tập chương II có đáp án !!
Quảng cáo
Trả lời:
Bất phương trình bậc nhất hai ẩn x, y có dạng tổng quát: ax + by ≤ c (ax + by ≥ c, ax + by < c, ax + by > c) với a, b, c là các số thực đã cho, a và b không đồng thời bằng 0, x và y là các ẩn số.
Khi đó trong các đáp án đã cho chỉ có đáp án A có dạng bất phương trình bậc nhất hai ẩn với a = 1, b = 1 và c = 3.
Chọn A.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi số tiền bác An đầu tư cho trái phiếu chính phủ, trái phiếu ngân hàng lần lượt là x, y (triệu đồng) (0 ≤ x, y ≤ 1 200).
Khi đó bác An đầu tư cho trái phiếu doanh nghiệp là 1 200 – x – y (triệu đồng)
Vì lí do giảm thuế, bác An muốn số tiền đầu tư trái phiếu chính phủ gấp ít nhất 3 lần số tiền đầu tư trái phiếu ngân hàng nên ta có: x ≥ 3y hay x – 3y ≥ 0.
Để giảm thiểu rủi ro, bác An đầu tư không quá 200 triệu đồng cho trái phiếu doanh nghiệp nên ta có: 1 200 – x – y ≤ 200 hay x + y ≥ 1 000.
Từ đó ta có hệ bất phương trình:Miền nghiệm của hệ bất phương trình là miền tứ giác ABCD với tọa độ các điểm
A(1 000;0), B(750;250), C(1 200;400), D(1 200;0).

Lợi nhuận bác An thu được là: F(x;y) = 7%x + 8%y + 12%(1200 – x – y) = 144 – 0,05x – 0,04y (triệu đồng)
Tính giá trị của F(x;y) tại các điểm A, B, C, D, ta được:
F(1 000;0) = 144 – 0,05.1 000 – 0,04.0 = 94;
F(750;250) = 144 – 0,05.750 – 0,04.250 = 96,5;
F(1 200;400) = 144 – 0,05.1 200 – 0,04.400 = 68;
F(1 200;0) = 144 – 0,05.1 200 – 0,04.0 = 84;
Suy ra F(x;y) lớn nhất bằng 96,5 khi x = 750, y = 250.
Vậy bác An nên đầu tư 750 triệu đồng vào trái phiếu chính phủ, 250 triệu đồng vào trái phiếu ngân hàng và 200 triệu đồng vào trái phiếu doanh nghiệp để lợi nhuận thu được là lớn nhất.
Lời giải
Ta có:
Miền nghiệm của bất phương trình bậc nhất hai ẩn này được xác định như sau:
- Vẽ đường thẳng d: x – 5y = 2.
- Ta lấy gốc tọa độ O(0;0) và tính -0 – 5.0 = 0 <2
Do đó miền nghiệm của bất phương trình là nửa mặt phẳng có bờ là đường thẳng d (kể cả đường thẳng d) không chứa gốc tọa độ (miền không bị gạch).

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
