Câu hỏi:

13/07/2024 8,110

Trong một tuần, nhiệt độ cao nhất trong ngày (đơn vị 0C) tại hai thành phố Hà Nội và Điện Biên được cho như sau:

Hà Nội: 23 25 28 28 32 33 35.

Điện Biên: 16 24 26 26 26 27 28.

a) Tính khoảng biến thiên của mỗi mẫu số liệu và so sánh.

b) Em có nhận xét gì về sự ảnh hưởng của giá trị 16 đến khoảng biến thiên của mẫu số liệu về nhiệt độ cao nhất trong ngày tại Điện Biên?

c) Tính các tứ phân vị và hiệu Q3 – Q1 cho mỗi mẫu số liệu. Có thể dùng hiệu này để đo độ phân tán của mẫu số liệu không?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Khoảng biến thiên của mẫu số liệu nhiệt độ cao nhất mỗi ngày trong tuần ở Hà Nội là:

Nhiệt độ cao nhất và thấp nhất ở Hà Nội tương ứng là 35 và 23. Khi đó khoảng biến thiên là: R1 = 35 – 23 = 12.

Khoảng biến thiên của mẫu số liệu nhiệt độ cao nhất mỗi ngày trong tuần ở Điện Biên là:

Nhiệt độ cao nhất và thấp nhất ở Điện Biên tương ứng là 28 và 16. Khi đó khoảng biến thiên là: R2 = 28 – 16 = 12.

Vậy R1 = R2.

b) Về trực quan nhiệt độ tại Điện Biên thay đổi khá ít, riêng một ngày có nhiệt độ thấp hẳn là 16 °C, giá trị 16 này đã ảnh hưởng rất nhiều đến khoảng biến thiên.

c)

∙ Hà Nội: 23 25 28 28 32 33 35.

Vì n = 7 là số lẻ nên số trung vị là số chính giữa là Q2 = 28.

Ta tìm Q1 là trung vị của nửa số liệu bên trái Q2:

23; 25; 28.

Do đó Q1 = 25.

Ta tìm Q3 là trung vị của nửa số liệu bên phải Q2:

32; 33; 35.

Do đó Q3 = 33.

Tứ phân vị cho mẫu số liệu này là: Q1 = 25; Q2 = 28, Q3 = 33.

Suy ra ΔQ = Q3 – Q1 = 33 – 25 = 8.

∙ Điện Biên: 16 24 26 26 26 27 28.

Vì n = 7 là số lẻ nên số trung vị là số chính giữa là Q'2 = 26.

Ta tìm Q'1 là trung vị của nửa số liệu bên trái Q'2:

16; 24; 26.

Do đó Q'1 = 24.

Ta tìm Q'3 là trung vị của nửa số liệu bên phải Q'2:

26; 27; 28.

Do đó Q'3 = 27.

Tứ phân vị cho mẫu số liệu này là Q'1 = 24; Q'2 = 26, Q'3 = 27.

Suy ra Δ'Q = Q'3 – Q'1 = 27 – 24 = 3.

Có thể dùng số liệu này để đo độ phân tán của mẫu số liệu.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chiều cao cao nhất và thấp nhất tương ứng là 172 cm và 159 cm. Do đó khoảng biến thiên là R = 172 – 159 = 13 cm.

Vậy khoảng biến thiên R = 13cm.

Lời giải

Sắp xếp các giá trị của số liệu trên theo thứ tự từ bé đến lớn là:

2,593; 2,977; 3,155; 3,270; 3,387; 3,412; 3,813; 3,920; 4,042; 4,236.            .

Ta có giá trị lớn nhất là 4,236 kg và giá trị nhỏ nhất là 2,593 kg.

Khi đó khoảng biến thiên là: R = 4,236 – 2,593 = 1,643.

Vì n = 10 là số chẵn nên trung vị là trung bình cộng của hai giá trị chính giữa: Q2 = (3,387 + 3,412):2 = 3,3995.

Nửa số liệu bên trái gồm 5 số liệu là một số lẻ nên tứ phân vị thứ nhất là: Q1 = 3,155.

Nửa số liệu bên phải gồm 5 số liệu là một số lẻ nên tứ phân vị thứ ba là: Q3 = 3,920.

Khoảng tứ phân vị là: ΔQ=Q3Q1=3,9203,155=0,765.

Số trung bình cộng của mẫu số liệu là:

X¯=2,593+2,977+3,155+3,270+3,387+3,412+3,813+3,920+4,042+4,23610= 3,4805.

s2=2,5933,48052+2,9773,48052+...+4,0423,48052+4,2363,4805210

0,24

s=s20,49.

Vậy khoảng biến thiên R = 1,643, khoảng tứ phân vị ΔQ=0,765; độ lệch chuẩn s0,49.