Câu hỏi:
12/07/2024 29,197Một người bán nước giải khát đang có 24 g bột cam, 9 l nước và 210 g đường để pha chế hai loại nước cam A và B. Để pha chế 1 l nước cam loại A cần 30 g đường, 1 l nước và 1 g bột cam; để pha chế 1 l nước cam loại B cần 10 g đường, 1 l nước và 4 g bột cam. Mỗi lít nước cam loại A bán được 60 nghìn đồng, mỗi lít nước cam loại B bán được 80 nghìn đồng. Người đó nên pha chế bao nhiêu lít nước cam mỗi loại để có doanh thu cao nhất ?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi x là số lít nước cam loại A và y là số lít nước cam loại B có thể pha chế được.
- Hiển nhiên x ≥ 0 và y ≥ 0.
Để pha chế x lít nước cam loại A cần 30x gam đường, x lít nước và x gam bột cam.
Để pha chế y lít nước cam loại B cần 10y gam đường, y lít nước và 4y gam bột cam.
Tổng số đường cần dùng là: 30x + 10y (g); tổng số nước cần dùng là x + y (l) ; tổng số bột cam cần dùng là: x + 4y (gam).
- Do chỉ có 210 gam đường nên ta có bất phương trình: 30x + 10y ≤ 210, hay 3x + y ≤ 21.
- Do chỉ có 9 l nước nên ta có bất phương trình: x + y ≤ 9.
- Do chỉ có 24 gam bột cam nên ta có bất phương trình: x + 4y ≤ 24
Từ đó, ta có hệ bất phương trình mô tả các điều kiện ràng buộc đối với x và y là:
Biểu diễn miền nghiệm của hệ bất phương trình này trên hệ trục tọa độ Oxy, ta được hình 4.
Miền nghiệm của hệ bất phương trình là miền không tô màu (ngũ giác OABCD bao gồm cả các cạnh).
Tọa độ các đỉnh của ngũ giác đó là: O(0; 0); A (0; 6); B(4; 5); C(6; 3); D (7; 0).
Gọi F là doanh thu (đơn vị: nghìn đồng) của việc bán x lít nước cam loại A và y lít nước cam loại B.
Vì mỗi lít nước cam loại A bán được 60 nghìn đồng nên x lít nước cam loại A bán được 60x (nghìn đồng). Mỗi lít nước cam loại B bán được 80 nghìn đồng nên y lít nước cam loại B bán được 80y (nghìn đồng).
Tổng số tiền thu được là 60x + 80y (nghìn đồng)
Vì vậy, ta có: F(x ; y) = 60x + 80y.
Ta phải tìm x, y thỏa mãn hệ bất phương trình sao cho F đạt giá trị lớn nhất, nghĩa là tìm giá trị lớn nhất của biểu thức F = 60x + 80y trên miền ngũ giác OABCD.
Tính các giá trị của F tại các đỉnh của ngũ giác, ta có :
Tại O(0 ; 0) : F = 60.0 + 80.0 = 0 ;
Tại A(0 ; 6) : F = 60.0 + 80.6 = 480 ;
Tại B(4 ; 5) : F = 60.4 + 80.5 = 640 ;
Tại C(6 ; 3) : F = 60.6 + 80.3 = 600 ;
Tại D(7 ; 0) : F = 60.7 + 80.0 = 420 ;
F đạt giá trị lớn nhất bằng 640 tại B(4 ; 5).
Vậy để có doanh thu cao nhất thì người đó nên pha chế 4 lít nước cam loại A và 5 lít nước cam loại B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một học sinh dự định vẽ các tấm thiệp xuân bằng tay để bàn trong một hội chợ Tết. Cần 2 giờ để vẽ một tấm thiệp loại nhỏ có giá 10 nghìn đồng và 3 giờ để vẽ một tấm thiệp lớn có giá 20 nghìn đồng. Học sinh này chỉ có 30 giờ để vẽ và ban tổ chức hội chợ yêu cầu phải vẽ ít nhất 12 tấm. Hãy cho biết bạn ấy cần vẽ bao nhiêu tấm thiệp mỗi loại để có được nhiều tiền nhất.
Câu 2:
Trong một tuần, bạn Mạnh có thể thu xếp được tối đa 12 giờ để tập thể dục giảm cân bằng hai môn : đạp xe và tập cử tạ tại phòng tập. Cho biết mỗi giờ đạp xe sẽ tiêu hao 350 calo và không tốn chi phí, mỗi giờ tập cử tạ sẽ tiêu hao 700 calo với chi phí 50 000 đồng/giờ. Mạnh muốn tiêu hao nhiều calo nhưng không được vượt quá 7 000 calo một tuần. Hãy giúp bạn Mạnh tính số giờ đạp xe và số giờ tập tạ một tuần trong hai trường hợp sau :
a) Mạnh muốn chi phí tập luyện là ít nhất.
b) Mạnh muốn số calo tiêu hao là lớn nhất.
Câu 3:
Bạn Lan thu xếp được không quá 10 giờ để làm hai loại đèn trung thu tặng cho các trẻ em khuyết tật. Loại đèn hình con cá cần 2 giờ để làm xong 1 cái, còn loại đèn ông sao chỉ cần 1 giờ để làm xong 1 cái. Gọi x, y lần lượt là số đèn hình con cá và đèn ông sao bạn Lan sẽ làm. Hãy lập hệ bất phương trình mô tả điều kiện của x, y và biểu diễn miền nghiệm của hệ bất phương trình đó.
Câu 4:
Biểu diễn miền nghiệm của mỗi hệ bất phương trình sau :
a)
b)
c)
Câu 6:
Một nhà máy sản xuất hai loại thuốc trừ sâu nông nghiệp là A và B. Cứ sản xuất mỗi thùng loại A thì nhà máy thải ra 0,25 kg khí cacbon dioxide (CO2) và 0,60 kg khí sulffur dioxide (SO2), sản xuất mỗi thùng loại B thì thải ra 0,50 kg CO2 và 0,20 kg SO2. Biết rằng, quy định hạn chế sản lượng (CO2) của nhà máy tối đa là 75 kg và SO2 tối đa là 90 kg mỗi ngày.
a) Tìm hệ bất phương trình mô tả số thùng của mỗi loại thuốc trừ sâu mà nhà máy có thể sản xuất mỗi ngày để đáp ứng các điều kiện hạn chế trên. Biểu diễn miền nghiệm của hệ bất phương trình đó trên mặt phẳng tọa độ.
b) Việc nhà máy sản xuất 100 thùng loại A và 80 thùng loại B mỗi ngày có phù hợp với quy định không ?
c) Việc nhà máy sản xuất 60 thùng loại A và 160 thùng loại B mỗi ngày có phù hợp với quy định không ?
về câu hỏi!