Câu hỏi:
13/07/2024 5,099Một nhà máy sản xuất hai loại thuốc trừ sâu nông nghiệp là A và B. Cứ sản xuất mỗi thùng loại A thì nhà máy thải ra 0,25 kg khí cacbon dioxide (CO2) và 0,60 kg khí sulffur dioxide (SO2), sản xuất mỗi thùng loại B thì thải ra 0,50 kg CO2 và 0,20 kg SO2. Biết rằng, quy định hạn chế sản lượng (CO2) của nhà máy tối đa là 75 kg và SO2 tối đa là 90 kg mỗi ngày.
a) Tìm hệ bất phương trình mô tả số thùng của mỗi loại thuốc trừ sâu mà nhà máy có thể sản xuất mỗi ngày để đáp ứng các điều kiện hạn chế trên. Biểu diễn miền nghiệm của hệ bất phương trình đó trên mặt phẳng tọa độ.
b) Việc nhà máy sản xuất 100 thùng loại A và 80 thùng loại B mỗi ngày có phù hợp với quy định không ?
c) Việc nhà máy sản xuất 60 thùng loại A và 160 thùng loại B mỗi ngày có phù hợp với quy định không ?
Câu hỏi trong đề: Bài tập Hệ bất phương trình bậc nhất hai ẩn có đáp án !!
Quảng cáo
Trả lời:
a) Gọi x (thùng) là số thùng thuốc trừ sâu loại A được sản xuất ra trong một ngày, y (thùng) là số thùng thuốc trừ sâu loại B nhà máy sản xuất ra trong một ngày.
- Hiển nhiên, ta có : x ≥ 0, y ≥ 0 và x,y ∈ .
Khi đó, số khí CO2 , SO2 thải ra khi sản xuất x thùng thuốc trừ sâu loại A lần lượt là: 0,25x (kg) và 0,6x (kg).
Số khí CO2 , SO2 thải ra khi sản xuất y thùng thuốc trừ sâu loại B lần lượt là: 0,5y (kg) và 0,2y (kg).
Tổng lượng khí CO2 thải ra trong một ngày khi sản xuất x thùng thuốc loại A và y thùng thuốc loại B là: 0,25x + 0,5y (kg)
Tổng lượng khí SO2 thải ra trong một ngày khi sản xuất x thùng thuốc loại A và y thùng thuốc loại B là: 0,6x + 0,2y (kg)
- Do quy định hạn chế sản lượng CO2 của nhà máy tối đa là 75 kg và SO2 tối đa là 90 kg mỗi ngày nên ta có các bất phương trình sau :
0,25x + 0,5y ≤ 75;
0,6x + 0,2y ≤ 90.
Vậy, ta có hệ bất phương trình trình mô tả số thùng của mỗi loại thuốc trừ sâu mà nhà máy có thể sản xuất mỗi ngày để đáp ứng các điều kiện hạn chế trên là:
Biểu diễn miền nghiệm của hệ trên mặt phẳng tọa độ Oxy ta được hình sau:
Vậy, miền không tô màu (miền tứ giác OABC, bao gồm cả các cạnh) là phần biểu diễn miền nghiệm của hệ bất phương trình đã cho.
b) Việc nhà máy sản xuất 100 thùng loại A và 80 thùng loại B mỗi ngày tương ứng với x = 100 và y = 80.
Ta có, x = 100 và y = 80 thì:
Do đó, cặp (100; 80) là nghiệm của hệ bất phương trình.
Vậy, việc nhà máy sản xuất 100 thùng loại A và 80 thùng loại B mỗi ngày là phù hợp với quy định.
c) Việc nhà máy sản xuất 60 thùng loại A và 160 thùng loại B mỗi ngày tương ứng với x = 60 và y = 160.
Ta có, x = 60 và y = 160 thì:
Do đó, cặp (60; 160) không là nghiệm của hệ bất phương trình.
Việc nhà máy sản xuất 60 thùng loại A và 160 thùng loại B mỗi ngày không phù hợp với quy định.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi x là số lít nước cam loại A và y là số lít nước cam loại B có thể pha chế được.
- Hiển nhiên x ≥ 0 và y ≥ 0.
Để pha chế x lít nước cam loại A cần 30x gam đường, x lít nước và x gam bột cam.
Để pha chế y lít nước cam loại B cần 10y gam đường, y lít nước và 4y gam bột cam.
Tổng số đường cần dùng là: 30x + 10y (g); tổng số nước cần dùng là x + y (l) ; tổng số bột cam cần dùng là: x + 4y (gam).
- Do chỉ có 210 gam đường nên ta có bất phương trình: 30x + 10y ≤ 210, hay 3x + y ≤ 21.
- Do chỉ có 9 l nước nên ta có bất phương trình: x + y ≤ 9.
- Do chỉ có 24 gam bột cam nên ta có bất phương trình: x + 4y ≤ 24
Từ đó, ta có hệ bất phương trình mô tả các điều kiện ràng buộc đối với x và y là:
Biểu diễn miền nghiệm của hệ bất phương trình này trên hệ trục tọa độ Oxy, ta được hình 4.
Miền nghiệm của hệ bất phương trình là miền không tô màu (ngũ giác OABCD bao gồm cả các cạnh).
Tọa độ các đỉnh của ngũ giác đó là: O(0; 0); A (0; 6); B(4; 5); C(6; 3); D (7; 0).
Gọi F là doanh thu (đơn vị: nghìn đồng) của việc bán x lít nước cam loại A và y lít nước cam loại B.
Vì mỗi lít nước cam loại A bán được 60 nghìn đồng nên x lít nước cam loại A bán được 60x (nghìn đồng). Mỗi lít nước cam loại B bán được 80 nghìn đồng nên y lít nước cam loại B bán được 80y (nghìn đồng).
Tổng số tiền thu được là 60x + 80y (nghìn đồng)
Vì vậy, ta có: F(x ; y) = 60x + 80y.
Ta phải tìm x, y thỏa mãn hệ bất phương trình sao cho F đạt giá trị lớn nhất, nghĩa là tìm giá trị lớn nhất của biểu thức F = 60x + 80y trên miền ngũ giác OABCD.
Tính các giá trị của F tại các đỉnh của ngũ giác, ta có :
Tại O(0 ; 0) : F = 60.0 + 80.0 = 0 ;
Tại A(0 ; 6) : F = 60.0 + 80.6 = 480 ;
Tại B(4 ; 5) : F = 60.4 + 80.5 = 640 ;
Tại C(6 ; 3) : F = 60.6 + 80.3 = 600 ;
Tại D(7 ; 0) : F = 60.7 + 80.0 = 420 ;
F đạt giá trị lớn nhất bằng 640 tại B(4 ; 5).
Vậy để có doanh thu cao nhất thì người đó nên pha chế 4 lít nước cam loại A và 5 lít nước cam loại B.
Lời giải
Gọi x (tấm), y (tấm) lần lượt là số thiệp loại nhỏ và số thiệp loại lớn mà bạn học sinh đó vẽ.
Hiển nhiên x ≥ 0 và y ≥ 0.
Học sinh này phải vẽ ít nhất 12 tấm nên ta có bất phương trình x + y ≥ 12.
Số giờ cần để làm x tấm thiệp nhỏ là : 2x (giờ).
Số giờ cần để làm y tấm thiệp lớn là : 3y (giờ).
Tổng số giờ để vẽ x tấm thiệp nhỏ và y tấm thiệp lớn là : 2x + 3y (giờ).
Vì học sinh này chỉ có 30 giờ để vẽ nên ta có bất phương trình : 2x + 3y ≤ 30.
Vậy ta có hệ bất phương trình:
Biểu diễn miền nghiệm của hệ trên mặt phẳng tọa độ Oxy ta được hình sau :
Vậy, miền không tô màu (miền tam giác ABC, bao gồm cả các cạnh) trong hình sau là phần giao các miền nghiệm của các bất phương trình trong hệ và cũng là phần biểu diễn miền nghiệm của hệ bất phương trình trên.
Tọa độ các đỉnh của tam giác đó là : A (15; 0); B(6; 6); C(12; 0).
Gọi F là số tiền (đơn vị: nghìn đồng) của việc bán x tấm thiệp nhỏ và y tấm thiệp lớn.
Số tiền thu được từ x tấm thiệp nhỏ là : 10x (nghìn đồng).
Số tiền thu được từ y tấm thiệp lớn là : 20y (nghìn đồng).
Tổng số tiền thu được là : 10x + 20y (nghìn đồng).
Vậy F =10x + 20y (nghìn đồng).
Ta phải tìm x, y thỏa mãn hệ bất phương trình sao cho F đạt giá trị lớn nhất, nghĩa là tìm giá trị lớn nhất của biểu thức F =10x + 20y trên miền tam giác ABC.
Tính các giá trị của F tại các đỉnh của tam giác, ta có :
Tại A(15 ; 0): F = 10.15 + 20.0 = 150 ;
Tại B(6 ; 6): F = 10.6 + 20.6 = 180 ;
Tại C(12 ; 0): F = 10.12 + 20.0 = 120 ;
F đạt giá trị lớn nhất bằng 180 tại B(6 ; 6).
Vậy để có được nhiều tiền nhất bạn ấy cần vẽ 6 tấm thiệp nhỏ và 6 tấm thiệp lớn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
15 câu Trắc nghiệm Toán 10 chân trời sáng tạo Không gian mẫu và biến cố có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận