Câu hỏi:
13/07/2024 31,696Một học sinh dự định vẽ các tấm thiệp xuân bằng tay để bàn trong một hội chợ Tết. Cần 2 giờ để vẽ một tấm thiệp loại nhỏ có giá 10 nghìn đồng và 3 giờ để vẽ một tấm thiệp lớn có giá 20 nghìn đồng. Học sinh này chỉ có 30 giờ để vẽ và ban tổ chức hội chợ yêu cầu phải vẽ ít nhất 12 tấm. Hãy cho biết bạn ấy cần vẽ bao nhiêu tấm thiệp mỗi loại để có được nhiều tiền nhất.
Câu hỏi trong đề: Bài tập Hệ bất phương trình bậc nhất hai ẩn có đáp án !!
Quảng cáo
Trả lời:
Gọi x (tấm), y (tấm) lần lượt là số thiệp loại nhỏ và số thiệp loại lớn mà bạn học sinh đó vẽ.
Hiển nhiên x ≥ 0 và y ≥ 0.
Học sinh này phải vẽ ít nhất 12 tấm nên ta có bất phương trình x + y ≥ 12.
Số giờ cần để làm x tấm thiệp nhỏ là : 2x (giờ).
Số giờ cần để làm y tấm thiệp lớn là : 3y (giờ).
Tổng số giờ để vẽ x tấm thiệp nhỏ và y tấm thiệp lớn là : 2x + 3y (giờ).
Vì học sinh này chỉ có 30 giờ để vẽ nên ta có bất phương trình : 2x + 3y ≤ 30.
Vậy ta có hệ bất phương trình:
Biểu diễn miền nghiệm của hệ trên mặt phẳng tọa độ Oxy ta được hình sau :
Vậy, miền không tô màu (miền tam giác ABC, bao gồm cả các cạnh) trong hình sau là phần giao các miền nghiệm của các bất phương trình trong hệ và cũng là phần biểu diễn miền nghiệm của hệ bất phương trình trên.
Tọa độ các đỉnh của tam giác đó là : A (15; 0); B(6; 6); C(12; 0).
Gọi F là số tiền (đơn vị: nghìn đồng) của việc bán x tấm thiệp nhỏ và y tấm thiệp lớn.
Số tiền thu được từ x tấm thiệp nhỏ là : 10x (nghìn đồng).
Số tiền thu được từ y tấm thiệp lớn là : 20y (nghìn đồng).
Tổng số tiền thu được là : 10x + 20y (nghìn đồng).
Vậy F =10x + 20y (nghìn đồng).
Ta phải tìm x, y thỏa mãn hệ bất phương trình sao cho F đạt giá trị lớn nhất, nghĩa là tìm giá trị lớn nhất của biểu thức F =10x + 20y trên miền tam giác ABC.
Tính các giá trị của F tại các đỉnh của tam giác, ta có :
Tại A(15 ; 0): F = 10.15 + 20.0 = 150 ;
Tại B(6 ; 6): F = 10.6 + 20.6 = 180 ;
Tại C(12 ; 0): F = 10.12 + 20.0 = 120 ;
F đạt giá trị lớn nhất bằng 180 tại B(6 ; 6).
Vậy để có được nhiều tiền nhất bạn ấy cần vẽ 6 tấm thiệp nhỏ và 6 tấm thiệp lớn.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi x là số lít nước cam loại A và y là số lít nước cam loại B có thể pha chế được.
- Hiển nhiên x ≥ 0 và y ≥ 0.
Để pha chế x lít nước cam loại A cần 30x gam đường, x lít nước và x gam bột cam.
Để pha chế y lít nước cam loại B cần 10y gam đường, y lít nước và 4y gam bột cam.
Tổng số đường cần dùng là: 30x + 10y (g); tổng số nước cần dùng là x + y (l) ; tổng số bột cam cần dùng là: x + 4y (gam).
- Do chỉ có 210 gam đường nên ta có bất phương trình: 30x + 10y ≤ 210, hay 3x + y ≤ 21.
- Do chỉ có 9 l nước nên ta có bất phương trình: x + y ≤ 9.
- Do chỉ có 24 gam bột cam nên ta có bất phương trình: x + 4y ≤ 24
Từ đó, ta có hệ bất phương trình mô tả các điều kiện ràng buộc đối với x và y là:
Biểu diễn miền nghiệm của hệ bất phương trình này trên hệ trục tọa độ Oxy, ta được hình 4.
Miền nghiệm của hệ bất phương trình là miền không tô màu (ngũ giác OABCD bao gồm cả các cạnh).
Tọa độ các đỉnh của ngũ giác đó là: O(0; 0); A (0; 6); B(4; 5); C(6; 3); D (7; 0).
Gọi F là doanh thu (đơn vị: nghìn đồng) của việc bán x lít nước cam loại A và y lít nước cam loại B.
Vì mỗi lít nước cam loại A bán được 60 nghìn đồng nên x lít nước cam loại A bán được 60x (nghìn đồng). Mỗi lít nước cam loại B bán được 80 nghìn đồng nên y lít nước cam loại B bán được 80y (nghìn đồng).
Tổng số tiền thu được là 60x + 80y (nghìn đồng)
Vì vậy, ta có: F(x ; y) = 60x + 80y.
Ta phải tìm x, y thỏa mãn hệ bất phương trình sao cho F đạt giá trị lớn nhất, nghĩa là tìm giá trị lớn nhất của biểu thức F = 60x + 80y trên miền ngũ giác OABCD.
Tính các giá trị của F tại các đỉnh của ngũ giác, ta có :
Tại O(0 ; 0) : F = 60.0 + 80.0 = 0 ;
Tại A(0 ; 6) : F = 60.0 + 80.6 = 480 ;
Tại B(4 ; 5) : F = 60.4 + 80.5 = 640 ;
Tại C(6 ; 3) : F = 60.6 + 80.3 = 600 ;
Tại D(7 ; 0) : F = 60.7 + 80.0 = 420 ;
F đạt giá trị lớn nhất bằng 640 tại B(4 ; 5).
Vậy để có doanh thu cao nhất thì người đó nên pha chế 4 lít nước cam loại A và 5 lít nước cam loại B.
Lời giải
Gọi x (giờ) là số giờ bạn Mạnh đạp xe, y (giờ) là số giờ bạn Mạnh tập tạ trong một tuần.
Hiển nhiên ta có x ≥ 0 và y ≥ 0.
Tổng số giờ bạn Mạnh tập thể dục trong một tuần là : x + y (giờ)
Do một tuần bạn Mạnh thu xếp được tối đa 12 giờ để tập thể dục nên ta có bất phương trình sau : x + y ≤ 12.
Do mỗi giờ đạp xe tiêu hao 350 calo nên với x giờ đạp xe sẽ tiêu hao 350x calo.
Mỗi giờ tập tạ tiêu hao 700 calo nên với y giờ tập tạ sẽ tiêu hao 700y calo.
Tổng số calo tiêu hao là : 350x + 700y (calo).
Mặt khác, Mạnh muốn tiêu hao nhiều calo nhưng không được vượt quá 7 000 calo một tuần. Vì vậy, ta có bất phương trình : 350x + 700y ≤ 7 000, tức là : x + 2y ≤ 20.
Vậy ta có hệ bất phương trình là :
Biểu diễn miền nghiệm của hệ trên mặt phẳng tọa độ Oxy ta được hình ảnh sau :
Vậy, miền không tô màu (miền tứ giác OABC, bao gồm cả các cạnh) là phần giao miền nghiệm của các bất phương trình trong hệ và cũng là phần biểu diễn miền nghiệm của hệ bất phương trình trên.
Tọa độ các đỉnh của tứ giác đó là : O(0 ;0) ; A (0; 10); B(4; 8); C(12; 0).
Gọi F là chi phí tập luyện.
Vì đạp xe không mất phí và tập tạ tốn chi phí 50 000 đồng/giờ nên với x giờ đạp xe và y giờ tập tạ thì tốn số tiền là : 0.x + 50 000y = 50 000y (đồng).
Vậy F =50 000y.
Tính các giá trị của F tại các đỉnh của tứ giác, ta có :
Tại O(0 ; 0) : F = 50 000.0 = 0;
Tại A(0 ; 10) : F = 50 000.10 = 500 000;
Tại B(4 ; 8) : F = 50 000. 8 = 400 000 ;
Tại C(12 ; 0) : F = 50 000 . 0 = 0 ;
F đạt giá trị nhỏ nhất bằng 0 tại O (0;0); C(12 ; 0).
Vậy Mạnh muốn chi phí tập luyện là ít nhất khi Mạnh không tập luyện cả hai môn thể thao trên hoặc Mạnh chỉ đạp xe 12 giờ và không tập tạ.
b) Gọi F’ là số calo tiêu hao. Khi đó F’ = 350x + 700y (calo).
Tính các giá trị của F’ tại các đỉnh của tứ giác, ta có :
Tại O(0 ; 0) : F’ = 350.0 + 700.0 = 0;
Tại A(0 ; 10) : F’ = 350.0 + 700.10 = 7 000;
Tại B(4 ; 8) : F’ = 350.4 + 700.8 = 7 000;
Tại C(12 ; 0) : F’ = 350.12 + 700.0 = 4200.
F’ đạt giá trị lớn nhất bằng 7 000 tại A(0 ; 10) và B(4 ; 8) .
Vậy Mạnh muốn số calo tiêu hao là lớn nhất thì Mạnh sẽ chỉ tập tạ trong 10 giờ hoặc đạp xe 4 giờ và tập tạ 8 giờ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
Bộ 5 đề thi cuối kì 2 Toán 10 Kết nối tri thức cấu trúc mới có đáp án - Đề 1
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
10 Bài tập Tính số trung bình, trung vị, tứ phân vị và mốt của mẫu số liệu cho trước (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận