Câu hỏi:
13/07/2024 3,242
Cho đoạn thẳng AB có độ dài 20cm. Trên đoạn thẳng AB lấy hai điểm C và D sao cho AC = 6cm; AD = 12cm.
a) Tính độ dài BC; CD.
b) C có phải là trung điểm của AD không? Vì sao?
Cho đoạn thẳng AB có độ dài 20cm. Trên đoạn thẳng AB lấy hai điểm C và D sao cho AC = 6cm; AD = 12cm.
a) Tính độ dài BC; CD.
b) C có phải là trung điểm của AD không? Vì sao?
Câu hỏi trong đề: Đề kiểm tra Giữa học kì 2 Toán 6 có đáp án !!
Quảng cáo
Trả lời:
a) Vì C nằm trên đoạn thẳng AB nên AC + CB = AB
Thay số: 6 + CB = 20
CB = 20 – 6 = 14cm
Vì AC = 6cm và AD = 12 cm nên AC < AD. Do đó C nằm giữa A và D.
Ta có: AD = AC + CD
Thay số: 12 = 6 + CD
CD = 12 – 6
CD = 6cm
b) Ta có: C nằm giữa A và D.
Lại có AC = CD = \(\frac{{AD}}{2} = \frac{{12}}{2} = 6cm\)
Do đó C là trung điểm của AD
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi d = ƯCLN(3n +2; 5n + 3) (d \( \in {\mathbb{N}^*}\))
Ta có: \(\left\{ \begin{array}{l}\left( {3n + 2} \right) \vdots d\\\left( {5n + 3} \right) \vdots d\end{array} \right. \Rightarrow \left\{ \begin{array}{l}5.\left( {3n + 2} \right) \vdots d\\3.\left( {5n + 3} \right) \vdots d\end{array} \right. \Rightarrow \left\{ \begin{array}{l}15n + 10 \vdots d\\15n + 9 \vdots d\end{array} \right.\)
\( \Rightarrow \left[ {\left( {15n + 10} \right) - \left( {15n + 9} \right)} \right] \vdots d\)
\( \Leftrightarrow \left( {15n + 10 - 15n - 9} \right) \vdots d\)
\( \Leftrightarrow 1 \vdots d\)
\( \Rightarrow d = 1\)
Vậy phân số đã cho tối giản.
Lời giải
Lời giải:
Vì O là trung điểm của AB nên OB = OB = \(\frac{{AB}}{2} = \frac{{12}}{2}\) = 6cm
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.