a) Quan sát hình vẽ rồi điền vào bảng sau các góc có trong hình vẽ

Tên góc
(cách viết thông thường)
Kí hiệu
Tên đỉnh
Tên cạnh
Góc\(xOz\),
góc \[{\rm{zOx}}\], góc \({O_1}\)
\(\widehat {xOz},\widehat {zOx},\widehat {{O_1}}\)
O
Ox, Oz
b) Cho đoạn thẳng CD = 8 cm. I là điểm nằm giữa C, D. Gọi M, N lần lượt là trung điểm các đoạn thẳng IC, ID. Tính độ dài đoạn thẳng MN.
a) Quan sát hình vẽ rồi điền vào bảng sau các góc có trong hình vẽ
Tên góc (cách viết thông thường) |
Kí hiệu |
Tên đỉnh |
Tên cạnh |
Góc\(xOz\), góc \[{\rm{zOx}}\], góc \({O_1}\) |
\(\widehat {xOz},\widehat {zOx},\widehat {{O_1}}\) |
O |
Ox, Oz |
|
|
|
|
|
|
|
|
b) Cho đoạn thẳng CD = 8 cm. I là điểm nằm giữa C, D. Gọi M, N lần lượt là trung điểm các đoạn thẳng IC, ID. Tính độ dài đoạn thẳng MN.
Câu hỏi trong đề: Đề thi Cuối học kì 2 Toán 6 có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
Tên góc (cách viết thông thường) |
Kí hiệu |
Tên đỉnh |
Tên cạnh |
Góc \(xOz\), góc \[{\rm{zOx}}\], góc \({O_1}\) |
\(\widehat {xOz},\widehat {zOx},\widehat {{O_1}}\) |
O |
Ox, Oz |
Góc \(yOz\), góc \[{\rm{zOy}}\], góc \({O_2}\) |
\(\widehat {yOz},\widehat {zOy},\widehat {{O_2}}\) |
O |
Oy, Oz |
Góc \(xOy\), góc \[{\rm{yOx}}\], góc \(O\) |
\(\widehat {xOy},\widehat {yOx},\widehat O\) |
O |
Ox, Oy |
b)
Vì điểm M là trung điểm của IC nên ta có: \(IM = \frac{{IC}}{2}\)
Điểm \(N\)là trung điểm của ID nên: \(IN = \frac{{ID}}{2}\)
Mặt khác: I nằm giữa C và D nên ta có IC + ID = CD.
Do đó: \(MN = IM + IN = \frac{{IC + ID}}{2} = \frac{{CD}}{2} = \frac{8}{2} = 4\) cm.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Quan sát biểu đồ tranh ta thấy có bốn hình ü bạn An đi xe máy cùng bố mẹ.
Mà mỗi ü ứng với 3 buổi học.
Số buổi học An đến trường bằng xe máy cùng bố mẹ là: 4.3 = 12 (buổi học).
b) Số buổi học bạn An đi xe bus đến trường là: 3.3 = 9 (buổi học).
Số buổi học bạn An đi phương tiện khác đến trường là: 2.3 = 6 (buổi học).
Ta có bảng thống kê sau:
Phương tiện |
Xe bus |
Xe máy (bố mẹ chở) |
Phương tiện khác |
Số lượng học sinh |
9 |
12 |
6 |
c) Tổng số buổi học bạn An đi các phương tiện đến trường trong tháng 3 là:
9 + 12 + 6 = 27 (buổi học)
Xác suất bạn An đến trường bằng xe bus là: \(\frac{9}{{27}}.100\% = 33,33333..\) %
Làm tròn đến chữ số thập phân thứ nhất ta được kết quả là 33,3%.
Lời giải
Hướng dẫn giải:
a) \(\frac{2}{3}\,\, + \,\,\frac{1}{3} \cdot \,\,x\, = \,\frac{5}{6}\)
\({\mkern 1mu} {\mkern 1mu} \frac{1}{3}{\mkern 1mu} \cdot \,x{\mkern 1mu} \, = \,\,\frac{5}{6} - \frac{2}{3}{\mkern 1mu} \)
\({\mkern 1mu} \frac{1}{3}{\mkern 1mu} \, \cdot \,x{\mkern 1mu} \, = {\mkern 1mu} {\mkern 1mu} \frac{5}{6}{\mkern 1mu} \, - \,{\mkern 1mu} \frac{4}{6}\)
\({\mkern 1mu} \frac{1}{3} \cdot \,{\mkern 1mu} x{\mkern 1mu} \, = {\mkern 1mu} \,{\mkern 1mu} \frac{1}{6}{\mkern 1mu} \)
\(x{\mkern 1mu} {\mkern 1mu} = \,{\mkern 1mu} {\mkern 1mu} \frac{1}{6}\,{\mkern 1mu} {\mkern 1mu} :{\mkern 1mu} {\mkern 1mu} \,{\mkern 1mu} \frac{1}{3}\)
\(x{\mkern 1mu} \, = \,{\mkern 1mu} {\mkern 1mu} \frac{1}{6}\,{\mkern 1mu} \cdot \,\frac{3}{1}\)
\(x{\mkern 1mu} \, = \,{\mkern 1mu} \frac{1}{2}\).
Vậy \(x{\mkern 1mu} \, = \,{\mkern 1mu} \frac{1}{2}\).
b) 53,2 : (x – 3,5) + 45,8 = 99
53,2 : (x – 3,5) = 99 – 45,8
53,2 : (x – 3,5) = 53,2
x – 3,5 = 53,2 : 53,2
x – 3,5 = 1
x = 1 + 3,5
x = 4,5.
Vậy x = 4,5.
c) \[\left( {4\frac{1}{2} - 2x} \right).1\frac{4}{{61}} = 6\frac{1}{2}\].
\[\left( {\frac{9}{2} - 2x} \right).\frac{{65}}{{61}} = \frac{{13}}{2}\]
\[\frac{9}{2} - 2x = \frac{{13}}{2}:\frac{{65}}{{61}}\]
\[\frac{9}{2} - 2x = \frac{{13}}{2}.\frac{{61}}{{65}}\]
\[\frac{9}{2} - 2x = \frac{{13}}{2}.\frac{{61}}{{5.13}}\]
\[\frac{9}{2} - 2x = \frac{{61}}{{10}}\]
\[2x = \frac{9}{2} - \frac{{61}}{{10}}\]
\[2x = \frac{{45}}{{10}} - \frac{{61}}{{10}}\]
\[2x = \frac{{ - 16}}{{10}}\]
\[2x = \frac{{ - 8}}{5}\]
\[x = \frac{{ - 8}}{5}:2\]
\[x = \frac{{ - 8}}{5}.\frac{1}{2}\]
\[x = \frac{{ - 4}}{5}\]
Vậy \[x = \frac{{ - 4}}{5}\].
d) \(\frac{1}{2}\,\, \cdot \,x\,\, + \,\,150\% \cdot \,\,x\,\, = \,\,\,2022\)
\(\frac{1}{2}{\mkern 1mu} {\mkern 1mu} \cdot \,x{\mkern 1mu} \,{\mkern 1mu} + \,{\mkern 1mu} {\mkern 1mu} \frac{{150}}{{100}}\,\, \cdot \,{\mkern 1mu} x\,{\mkern 1mu} {\mkern 1mu} = {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} 2022\)
\(\frac{1}{2}{\mkern 1mu} {\mkern 1mu} \cdot \,{\mkern 1mu} x{\mkern 1mu} {\mkern 1mu} \, + \,{\mkern 1mu} {\mkern 1mu} \frac{3}{2}{\mkern 1mu} \, \cdot {\mkern 1mu} {\mkern 1mu} \,x{\mkern 1mu} \,{\mkern 1mu} = \,{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} 2022\)
\(x.\left( {\frac{1}{2} + \frac{3}{2}} \right) = 2022\)
\(x\,.{\mkern 1mu} \,\frac{4}{2}{\mkern 1mu} \, = {\mkern 1mu} \,2022\)
x . 2 = 2022
x = 2022 : 2
x = 1011
Vậy x = 1011.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.