Câu hỏi:
13/07/2024 1,989Cho hình chữ nhật ABCD có AB = 8 cm; BC = 6 cm. Vẽ đường cao AH của ∆ADB.
a) Chứng minh: ∆AHB đồng dạng ∆BCD.
b) Chứng minh: AD2 = DH . DB.
c) Tính độ dài đoạn thẳng AH.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a) Vì ABCD là hình chữ nhật nên AB // CD.
Suy ra: (hai góc so le trong).
Xét ∆AHB và ∆BCD có:
(cmt).
Do đó ∆AHB ∆BCD (g.g).
b) Xét ∆AHD và ∆BAD có:
chung.
Do đó ∆AHD ∆BAD (g.g)
Suy ra .
Vậy AD2 = DH . BD (đpcm).
c) Xét ∆ABD vuông tại A, áp dụng định lý Py-ta-go, ta có:
BD2 = AB2 + AD2 = 82 + 62 = 100
Suy ra: BD = 10 (cm)
Từ câu a: ∆AHB ∆BCD suy ra .
Hay AH . BD = AB. BC.
Do đó (cm).
Vậy AH = 4,8 cm.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Một vòi nước chảy vào bể không có nước. Cùng lúc đó một vòi nước khác chảy từ bể ra. Mỗi giờ lượng nước vòi chảy ra bằng lượng nước chảy vào. Sau 5 giờ thì bên trong bể đạt tới dung tích bể. Hỏi nếu bể không có nước mà chỉ mở vòi chảy vào thì sau bao lâu thì đầy bể?
Câu 4:
Giải các phương trình và bất phương trình sau:
a) (x – 2)(x + 7) = 0;
b) .
Câu 5:
Bất phương trình nào sau đây là bất phương trình bậc nhất một ẩn?
về câu hỏi!