Câu hỏi:

21/06/2022 520

Cho \[\Delta ABC = \Delta MNP\] trong đó \(\widehat A = 30^\circ \), \(\widehat P = 60^\circ \). So sánh các góc N, M, P.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Vì \[\Delta ABC = \Delta MNP\] nên \(\widehat M = \widehat A = 30^\circ \) (hai góc tương ứng bằng nhau)

Xét \(\Delta MNP\) ta có \(\widehat M + \widehat N + \widehat P = 180^\circ \) (tổng ba góc của một tam giác)

⇒ \(\widehat N = 180^\circ - \left( {\widehat M + \widehat P} \right)\)

⇒ \(\widehat N = 180^\circ - \left( {30^\circ + 60^\circ } \right) = 90^\circ \)

Do \(90^\circ > 60^\circ > 30^\circ \,\,{\rm{hay}}\,\,\widehat N > \widehat P > \widehat M\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

Xét tam giác ABC và tam giác ADE có:

\(\widehat B = \widehat D\)

\(\widehat {BAC} = \widehat {DAE}\) (2 góc đối đỉnh)

Mà \(\widehat B\) và \(\widehat {BAC}\) là hai góc kề của cạnh AB; \(\widehat D\) và \(\widehat {DAE}\) là hai góc kề của cạnh AD

Vậy để 2 tam giác bằng nhau theo trường hợp g.c.g cần có thêm điều kiện AB = AD.

Câu 2

Lời giải

Đáp án đúng là: A

Xét \[\Delta AOB\] và \[\Delta COD\] có:

\(\widehat {OAB} = \widehat {OCD}\) (2 góc so le trong do \(AB{\rm{//}}CD\))

AB = CD (gt)

\(\widehat {OBA} = \widehat {ODC}\) (2 góc so le trong do \(AB{\rm{//}}CD\))

\[ \Rightarrow \Delta AOB = \Delta COD\] (g.c.g)

Suy ra OA = OC (hai cạnh tương ứng)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP