Câu hỏi:

13/07/2024 232 Lưu

Cho \(A = \frac{{5n + 1}}{{n + 1}}\) (n ≠ −1). Tìm \(n \in \mathbb{Z}\) để biểu thức A đạt giá trị nguyên.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Với n ≠ −1, ta có: \[A = \frac{{5n + 1}}{{n + 1}} = \frac{{5(n + 1) - 4}}{{n + 1}} = 5 - \frac{4}{{n + 1}}\].

Để biểu thức A đạt giá trị nguyên thì \[5 - \frac{4}{{n + 1}} \in \mathbb{Z}\].

Mà \[5 \in \mathbb{Z}\] nên \[\frac{4}{{n + 1}} \in \mathbb{Z}\] hay 4 \[ \in \] Ư(4) = {−1; 1; −4; 4}.

Ta có bảng sau:

n + 1

−1

1

−4

4

n

−2 (TM)

0 (TM)

−5 (TM)

3 (TM)

Vậy để biểu thức A đạt giá trị nguyên thì x \[ \in \]{−5; −2; 0; 3}.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đơn thức là biểu thức đại số chỉ gồm một số, một biến hoặc một tích giữa các số và các biến.

Do đó, các biểu thức 4x2y ; 6xy.(−x3) ; −4xy2 là các đơn thức

Còn biểu thức 7 + xy2 có chứa phép cộng nên không phải là đơn thức.

Vậy chọn B.

Câu 2

Lời giải

Tam giác ABC có AB < AC < BC. Khẳng định nào sau đây là đúng? (ảnh 1)

Ta có, góc đối diện với cạnh AB là \(\widehat C\); góc đối diện với cạnh AC là \(\widehat B\); góc đối diện với cạnh BC là \(\widehat A\).

Vì AB < AC < BC nên \(\widehat C\) < \(\widehat B\) < \(\widehat A\) (quan hệ giữa góc và cạnh đối diện trong một tam giác).

Chọn đáp án A

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP