Câu hỏi:

12/07/2024 822

Cho ΔABC cân tại A kẻ AH\[ \bot \]BC (H\[ \in \]BC).

a) Chứng minh: HB = HC.

b) Kẻ HD\[ \bot \]AB (D\[ \in \]AB), HE\[ \bot \]AC (E\[ \in \]AC). Chứng minh ΔHDE cân.

c) Cho \(\widehat {BAC} = {120^o}\) thì ΔHDE trở thành tam giác gì? Vì sao?

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

GT

ΔABC cân tại A; AH\[ \bot \]BC (H\[ \in \]BC);

HD\[ \bot \]AB (D\[ \in \]AB), HE\[ \bot \]AC (E\[ \in \]AC).

KL

a) Chứng minh: HB = HC.

b) ΔHDE cân.

c) Cho \(\widehat {BAC} = {120^o}\) thì ΔHDE trở thành tam giác gì? Vì sao?

Cho ΔABC cân tại A kẻ AH vuông góc vớiBC (H thuộc BC). a) Chứng minh: HB = HC.  (ảnh 1)

a) Xét ΔABC cân tại A có AH là đường cao (vì AH\[ \bot \]BC) nên AH cũng là đường trung tuyến.

Do đó HB = HC.

b) Xét ΔBDH vuông tại D và ΔCEH vuông tại E có:

HB = HC (cmt)

\(\widehat B = \widehat C\) (ΔABC cân tại A)

Do đó ΔBDH = ΔCEH (cạnh huyền - góc nhọn).

Suy ra DH = HE (hai cạnh tương ứng)

Suy ra ΔHDE cân tại H.

Mặt khác, vì \(\widehat A = {120^o}\) nên \(\widehat B = \widehat C = \frac{1}{2}\,.\,({180^o} - \widehat A) = \frac{1}{2}\,.\,{60^o} = {30^o}\).

Từ ΔBDH = ΔCEH (cmt) suy ra \(\widehat {BHD} = \widehat {CHE}\) (hai góc tương ứng).

Xét ΔBDH vuông tại D nên \(\widehat B + \widehat {BHD} = {90^o} \Rightarrow \widehat {BHD} = {90^o} - \widehat B = {60^o}\).

Do đó \(\widehat {BHD} = \widehat {CHE} = {60^o}\)

Ta có:\(\widehat {BHC} = \widehat {BHD} + \widehat {DHE} + \widehat {EHC}\)

Suy ra \(\widehat {DHE} = \widehat {BHC} - \left( {\widehat {BHD} + \widehat {CHE}} \right)\)

\( \Rightarrow \widehat {AHE} = {180^o} - ({60^o} + {60^o}) = {60^o}\).

Ta thấy ΔHED cân tại H có \(\widehat {AHE} = {60^o}\)nên ΔHED là tam giác đều.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Xác định tính đúng/sai của các khẳng định sau bằn cách đánh dấu “x” vào ô trống thích hợp trong bảng sau:

 

STT

Câu

Đúng

Sai

1

Tam giác có ba cạnh 12cm; 16cm; 20cm là tam giác vuông.

 

 

2

Tam giác đều là tam giác cân có một góc bằng 60o.

 

 

3

Trong tam giác, góc đối diện với cạnh lớn nhất là góc tù.

 

 

4

Trong tam giác cân, góc ở đáy luôn nhỏ hơn 90o.

 

 

Xem đáp án » 12/07/2024 646

Câu 2:

Điểm bài kiểm tra môn Toán học kỳ I của 32 học sinh lớp 7A được ghi trong bảng sau:

7

4

4

6

6

4

6

8

8

7

2

6

4

8

5

6

9

8

4

7

9

5

5

5

7

2

7

6

7

8

6

10

a) Dấu hiệu ở đây là gì?

b) Lập bảng “tần số” và nhận xét.

c) Tính số trung bình cộng và tìm mốt của dấu hiệu.

d) Vẽ biểu đồ đoạn thẳng.

Xem đáp án » 12/07/2024 505

Câu 3:

Tìm giá trị nhỏ nhất của biểu thức \[{\left[ {{{\left( {x + \frac{1}{2}} \right)}^2} + \frac{5}{4}} \right]^2}\].

Xem đáp án » 12/07/2024 332

Câu 4:

Giá trị của biểu thức 2(x2 – 1) + 3x – 2 tại x = – 1 là:

Xem đáp án » 22/06/2022 271

Câu 5:

Cho hàm số \(f(x) = \frac{2}{3}x - 1\). Trong các điểm sau, điểm nào thuộc đồ thị hàm số trên.

Xem đáp án » 21/06/2022 214

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store