Câu hỏi:
12/07/2024 822Cho ΔABC cân tại A kẻ AH\[ \bot \]BC (H\[ \in \]BC).
a) Chứng minh: HB = HC.
b) Kẻ HD\[ \bot \]AB (D\[ \in \]AB), HE\[ \bot \]AC (E\[ \in \]AC). Chứng minh ΔHDE cân.
c) Cho \(\widehat {BAC} = {120^o}\) thì ΔHDE trở thành tam giác gì? Vì sao?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
GT |
ΔABC cân tại A; AH\[ \bot \]BC (H\[ \in \]BC); HD\[ \bot \]AB (D\[ \in \]AB), HE\[ \bot \]AC (E\[ \in \]AC). |
KL |
a) Chứng minh: HB = HC. b) ΔHDE cân. c) Cho \(\widehat {BAC} = {120^o}\) thì ΔHDE trở thành tam giác gì? Vì sao? |
a) Xét ΔABC cân tại A có AH là đường cao (vì AH\[ \bot \]BC) nên AH cũng là đường trung tuyến.
Do đó HB = HC.
b) Xét ΔBDH vuông tại D và ΔCEH vuông tại E có:
HB = HC (cmt)
\(\widehat B = \widehat C\) (ΔABC cân tại A)
Do đó ΔBDH = ΔCEH (cạnh huyền - góc nhọn).
Suy ra DH = HE (hai cạnh tương ứng)
Suy ra ΔHDE cân tại H.
Mặt khác, vì \(\widehat A = {120^o}\) nên \(\widehat B = \widehat C = \frac{1}{2}\,.\,({180^o} - \widehat A) = \frac{1}{2}\,.\,{60^o} = {30^o}\).
Từ ΔBDH = ΔCEH (cmt) suy ra \(\widehat {BHD} = \widehat {CHE}\) (hai góc tương ứng).
Xét ΔBDH vuông tại D nên \(\widehat B + \widehat {BHD} = {90^o} \Rightarrow \widehat {BHD} = {90^o} - \widehat B = {60^o}\).
Do đó \(\widehat {BHD} = \widehat {CHE} = {60^o}\)
Ta có:\(\widehat {BHC} = \widehat {BHD} + \widehat {DHE} + \widehat {EHC}\)
Suy ra \(\widehat {DHE} = \widehat {BHC} - \left( {\widehat {BHD} + \widehat {CHE}} \right)\)
\( \Rightarrow \widehat {AHE} = {180^o} - ({60^o} + {60^o}) = {60^o}\).
Ta thấy ΔHED cân tại H có \(\widehat {AHE} = {60^o}\)nên ΔHED là tam giác đều.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Xác định tính đúng/sai của các khẳng định sau bằn cách đánh dấu “x” vào ô trống thích hợp trong bảng sau:
STT |
Câu |
Đúng |
Sai |
1 |
Tam giác có ba cạnh 12cm; 16cm; 20cm là tam giác vuông. |
|
|
2 |
Tam giác đều là tam giác cân có một góc bằng 60o. |
|
|
3 |
Trong tam giác, góc đối diện với cạnh lớn nhất là góc tù. |
|
|
4 |
Trong tam giác cân, góc ở đáy luôn nhỏ hơn 90o. |
|
|
Câu 2:
Điểm bài kiểm tra môn Toán học kỳ I của 32 học sinh lớp 7A được ghi trong bảng sau:
7 |
4 |
4 |
6 |
6 |
4 |
6 |
8 |
8 |
7 |
2 |
6 |
4 |
8 |
5 |
6 |
9 |
8 |
4 |
7 |
9 |
5 |
5 |
5 |
7 |
2 |
7 |
6 |
7 |
8 |
6 |
10 |
a) Dấu hiệu ở đây là gì?
b) Lập bảng “tần số” và nhận xét.
c) Tính số trung bình cộng và tìm mốt của dấu hiệu.
d) Vẽ biểu đồ đoạn thẳng.
Câu 3:
Tìm giá trị nhỏ nhất của biểu thức \[{\left[ {{{\left( {x + \frac{1}{2}} \right)}^2} + \frac{5}{4}} \right]^2}\].
Câu 5:
Cho hàm số \(f(x) = \frac{2}{3}x - 1\). Trong các điểm sau, điểm nào thuộc đồ thị hàm số trên.
về câu hỏi!