Câu hỏi:

23/06/2022 4,133

Tam giác MNP có đường trung tuyến ME và trọng tâm G. Khi đó tỉ số MGME bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Ba đường trung tuyến của tam giác cùng đi qua một điểm. Điểm đó cách đỉnh một khoàng bằng 23 độ dài đường trung tuyến đi qua đỉnh đó nên MGME=23.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC cân tại A, trung tuyến AM. Qua điểm B vẽ đường thẳng song song với đường thẳng AC, cắt đường thẳng AM tại điểm D. a) Chứng minh  tam giác AMC= tam giác DMB b) Chứng minh AB = BD. c) Gọi P là trung điểm của đoạn thẳng AB, đoạn thẳng PD cắt đoạn thẳng BC tại điểm O. Trên tia đối của tia PO lấy điểm N sao cho PN = PO. Chứng minh điểm O là trọng tâm của  tam giác ABD và NA = 2OM. (ảnh 1)

a) ΔABC cân tại A có M là trung điểm của BC nên AM vừa là đường trung tuyến, vừa là đường cao của ΔABC.

Do đó ADBC.

Do BD // AC nên MBD^=MCA^ (2 góc so le trong).

Xét ΔAMC vuông tại M và ΔDMB vuông tại M có:

MCA^=MBD^ (chứng minh trên).

MB = MC (theo giả thiết).

ΔAMC=ΔDMB (góc nhọn - cạnh góc vuông)

b) Do ΔAMC=ΔDMB (góc nhọn - cạnh góc vuông) nên MA = MD (2 cạnh tương ướng).

Do đó M là trung điểm của AD.

ΔABD có M là trung điểm của AD, lại có BMAD nên ΔABD cân tại B.

c) Xét ΔABD có BM, DP là các đường trung tuyến cắt nhau tại O nên O là trọng tâm của ΔABD.

Xét ΔAPN ΔBPO có:

AP = BP (theo giả thiết).

APN^=BPO^ (2 góc đối đỉnh).

PN = PO (theo giả thiết).

ΔAPN=ΔBPO (c - g - c).

 NA = BO (2 cạnh tương ứng).

Do O là trọng tâm của ΔABD nên BO = 23BM; OM = 13BM.

Do đó BO = 2OM.

Mà NA = BO nên NA = 2OM.

Vậy O là trọng tâm của ΔABD và NA = 2OM.

Lời giải

a) A(x) = -5x - 6 + 6x3 - 12

A(x) = 6x3 - 5x + (-6 - 12)

A(x) = 6x3 - 5x - 18

B(x) = x3 - 5x + 5x3 - 16 - 2x2

B(x) = (x3 + 5x3) - 2x2 - 5x - 16

B(x) = 6x3 - 2x2 - 5x - 16

b) A(x) + B(x) = 6x3 - 5x - 18 + 6x3 - 2x2 - 5x - 16

A(x) + B(x) = (6x3 + 6x3) - 2x2 + (-5x - 5x) + (-18 - 16)

A(x) + B(x) = 12x3 - 2x2 - 10x - 10

c) C(x) = A(x) - B(x)

C(x) = 6x3 - 5x - 18 - (6x3 - 2x2 - 5x - 16)

C(x) = 6x3 - 5x - 18 - 6x3 + 2x2 + 5x + 16

C(x) = (6x3 - 6x3) + 2x2 + (-5x + 5x) + (-18 + 16)

C(x) = 2x2 - 2

Để C(x) = 0 thì 2x2 - 2 = 0

 2x2 = 2

 x2 = 1

Trường hợp 1. x2 = 12

 x = 1

Trường hợp 2. x2 = (-1)2

 x = -1

Vậy x = 1 hoặc x = -1.

Câu 3

Giá trị có tần số lớn nhất được gọi là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Bậc của đơn thức 22x3y là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho ΔABC biết BC = 4 cm, AB = 5 cm, AC = 3 cm. Khi đó ta có tam giác ABC:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay