Câu hỏi:

26/06/2022 4,838

Chọn chuyến đi (H.8.1)

Media VietJack

Từ Hà Nội vào Vinh mỗi ngày có 7 chuyến tàu hỏa và 2 chuyến máy bay. Bạn An muốn ngày Chủ nhật này đi từ Hà Nội vào Vinh bằng tàu hỏa hoặc máy bay. Hỏi bạn An có bao nhiêu cách chọn chuyến đi?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Bạn An có thể chọn đi tàu hỏa hoặc đi máy bay.

+) Vì có 7 chuyến tàu hỏa mỗi ngày, nên An có thể chọn 1 chuyến bất kì trong 7 chuyến đó để đi. Do đó An có 7 cách chọn tàu hỏa.

+) Vì có 2 chuyến máy nay mỗi ngày, nên An có thể chọn 1 chuyến bất kì trong 2 chuyến đó để đi. Do đó An có 2 cách chọn máy bay.

Vì tàu hỏa và máy bay là khác nhau nên An có 7 + 2 = 9 (cách chọn).

Vậy bạn An có 9 cách chọn chuyến đi.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Gọi số tự nhiên cần lập có dạng: \(\overline {abc} \), với a, b, c thuộc tập hợp số A = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}, (a ≠ 0, a ≠ b ≠ c).

Để lập số này, ta thực hiện ba công đoạn liên tiếp:

+ Chọn số a có 9 cách, do a ≠ 0.

+ Chọn b có 9 cách từ tập A\{a}.

+ Chọn c có 8 cách từ tập A\{a; b}.

Vậy số các số tự nhiên có 3 chữ số khác nhau là: 9 . 9 . 8 = 648 (số).

b) Gọi số tự nhiên cần lập có dạng: \(\overline {abc} \), với a, b, c thuộc tập hợp số A = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}, (a ≠ 0, a ≠ b ≠ c).

Để \(\overline {abc} \) là số lẻ thì c thuộc tập hợp {1; 3; 5; 7; 9},

+ Chọn c có 5 cách từ tập {1; 3; 5; 7; 9}.

+ Chọn a có 8 cách từ tập A\{c; 0}.

+ Chọn b có 8 cách từ tập A\{c; a}.

Vậy số các số tự nhiên là số lẻ có 3 chữ số khác nhau là: 5 . 8 . 8 = 320 (số).

c) Gọi số tự nhiên cần lập có dạng: \(\overline {abc} \), với a, b, c thuộc tập hợp số A = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}, (a ≠ 0).

Để \(\overline {abc} \)chia hết cho 5 thì c thuộc tập hợp {0; 5}.

+ Chọn c có 2 cách từ tập {0; 5}.

+ Chọn a có 9 cách từ tập A\{0}.

+ Chọn b có 10 cách từ tập A.

Vậy số các số tự nhiên có 3 chữ số mà chia hết cho 5 là: 2 . 9 . 10 = 180 (số).

d) Gọi số tự nhiên cần lập có dạng: \(\overline {abc} \), với a, b, c thuộc tập hợp số A = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}, (a ≠ 0, a ≠ b ≠ c).

Để \(\overline {abc} \) chia hết cho 5 thì c thuộc tập hợp {0; 5}.

+ Trường hợp 1: Nếu c = 0 thì: chọn a có 9 cách, chọn b có 8 cách.

Do đó, số các số tự nhiên có 3 chữ số khác nhau mà tận cùng là 0 là: 9 . 8 = 72 (số).

+ Trường hợp 2: Nếu c = 5 thì: chọn a có 8 cách (do a ≠ 0 và a ≠ c), chọn b có 8 cách (do a ≠ b ≠ c).

Do đó, số các số tự nhiên có 3 chữ số khác nhau mà tận cùng là 5 là: 8 . 8 = 64 (số).

Vì hai trường hợp rời nhau nên ta áp dụng quy tắc cộng, vậy số các số tự nhiên có 3 chữ số khác nhau mà chia hết cho 5 là: 72 + 64 = 136 (số).

Lời giải

Hướng dẫn giải

a) Để lập một mật khẩu chương trình máy tính, ta cần thực hiện ba công đoạn liên tiếp:

+ Chọn kí tự thứ nhất: có 10 cách chọn (chọn 1 chữ số trong 10 chữ số từ 0 đến 9).

+ Chọn kí tự thứ hai: tương tự kí tự thứ nhất, có 10 cách chọn.

+ Chọn kí tự thứ ba: tương tự trên, có 10 cách chọn.

Vậy theo quy tắc nhân, có thể tạo được số mật khẩu là: 10 . 10 . 10 = 1 000 (mật khẩu).

b) Để lập một mật khẩu chương trình máy tính theo quy định mới, ta cần thực hiện ba công đoạn liên tiếp:

+ Chọn kí tự thứ nhất từ tập 26 chữ từ A đến Z: có 26 cách chọn.

+ Chọn kí tự thứ hai là chữ số: có 10 cách chọn.

+ Chọn kí tự thứ ba là chữ số: có 10 cách chọn.

Do đó, theo quy tắc nhân, số cách tạo mật khẩu mới là: 26 . 10 . 10 = 2 600 (mật khẩu).

Vậy có thể tạo được nhiều hơn quy định cũ số mật khẩu là: 2 600 – 1 000 = 1 600 (mật khẩu).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP