Câu hỏi:
26/06/2022 5,678
Chọn vé tàu (H.8.2)
Bạn An đã quyết định mua vé tàu đi từ Hà Nội vào Vinh trên chuyến tàu SE7. Trên tàu có các toa ghế ngồi và các toa giường nằm. Toa ngồi có hai loại vé: ngồi cứng và ngồi mềm. Toa nằm có loại khoang 4 giường và khoang 6 giường. Khoang 4 giường có hai loại vé: tầng 1 và tầng 2, khoang 6 giường có ba loại vé: tầng 1, tầng 2 và tầng 3. Hỏi:
a) Có bao nhiêu loại vé ghế ngồi và bao nhiêu loại vé giường nằm?
b) Có bao nhiêu loại vé để bạn An lựa chọn?
Chọn vé tàu (H.8.2)

Bạn An đã quyết định mua vé tàu đi từ Hà Nội vào Vinh trên chuyến tàu SE7. Trên tàu có các toa ghế ngồi và các toa giường nằm. Toa ngồi có hai loại vé: ngồi cứng và ngồi mềm. Toa nằm có loại khoang 4 giường và khoang 6 giường. Khoang 4 giường có hai loại vé: tầng 1 và tầng 2, khoang 6 giường có ba loại vé: tầng 1, tầng 2 và tầng 3. Hỏi:
a) Có bao nhiêu loại vé ghế ngồi và bao nhiêu loại vé giường nằm?
b) Có bao nhiêu loại vé để bạn An lựa chọn?
Câu hỏi trong đề: Bài tập Bài 23. Quy tắc đếm có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Toa ngồi có hai loại vé: ngồi cứng và ngồi mềm nên số loại vé ghế ngồi là 2.
Toa nằm có loại khoang 4 giường và khoang 6 giường.
+ Khoang 4 giường có 2 loại vé: tầng 1 và tầng 2.
+ Khoang 6 giường có 3 loại vé: tầng 1, tầng 2 và tầng 3.
Số loại vé giường nằm là: 2 + 3 = 5.
Vậy có 2 loại vé ghế ngồi và 5 loại vé giường nằm.
b) An chọn loại vé ghế ngồi: có 2 cách chọn.
An chọn loại vé giường nằm: có 5 cách chọn.
Vậy số loại vé để An lựa chọn: 2 + 5 = 7 (cách chọn).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Gọi số tự nhiên cần lập có dạng: \(\overline {abc} \), với a, b, c thuộc tập hợp số A = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}, (a ≠ 0, a ≠ b ≠ c).
Để lập số này, ta thực hiện ba công đoạn liên tiếp:
+ Chọn số a có 9 cách, do a ≠ 0.
+ Chọn b có 9 cách từ tập A\{a}.
+ Chọn c có 8 cách từ tập A\{a; b}.
Vậy số các số tự nhiên có 3 chữ số khác nhau là: 9 . 9 . 8 = 648 (số).
b) Gọi số tự nhiên cần lập có dạng: \(\overline {abc} \), với a, b, c thuộc tập hợp số A = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}, (a ≠ 0, a ≠ b ≠ c).
Để \(\overline {abc} \) là số lẻ thì c thuộc tập hợp {1; 3; 5; 7; 9},
+ Chọn c có 5 cách từ tập {1; 3; 5; 7; 9}.
+ Chọn a có 8 cách từ tập A\{c; 0}.
+ Chọn b có 8 cách từ tập A\{c; a}.
Vậy số các số tự nhiên là số lẻ có 3 chữ số khác nhau là: 5 . 8 . 8 = 320 (số).
c) Gọi số tự nhiên cần lập có dạng: \(\overline {abc} \), với a, b, c thuộc tập hợp số A = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}, (a ≠ 0).
Để \(\overline {abc} \)chia hết cho 5 thì c thuộc tập hợp {0; 5}.
+ Chọn c có 2 cách từ tập {0; 5}.
+ Chọn a có 9 cách từ tập A\{0}.
+ Chọn b có 10 cách từ tập A.
Vậy số các số tự nhiên có 3 chữ số mà chia hết cho 5 là: 2 . 9 . 10 = 180 (số).
d) Gọi số tự nhiên cần lập có dạng: \(\overline {abc} \), với a, b, c thuộc tập hợp số A = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}, (a ≠ 0, a ≠ b ≠ c).
Để \(\overline {abc} \) chia hết cho 5 thì c thuộc tập hợp {0; 5}.
+ Trường hợp 1: Nếu c = 0 thì: chọn a có 9 cách, chọn b có 8 cách.
Do đó, số các số tự nhiên có 3 chữ số khác nhau mà tận cùng là 0 là: 9 . 8 = 72 (số).
+ Trường hợp 2: Nếu c = 5 thì: chọn a có 8 cách (do a ≠ 0 và a ≠ c), chọn b có 8 cách (do a ≠ b ≠ c).
Do đó, số các số tự nhiên có 3 chữ số khác nhau mà tận cùng là 5 là: 8 . 8 = 64 (số).
Vì hai trường hợp rời nhau nên ta áp dụng quy tắc cộng, vậy số các số tự nhiên có 3 chữ số khác nhau mà chia hết cho 5 là: 72 + 64 = 136 (số).
Lời giải
Hướng dẫn giải
a) Để lập một mật khẩu chương trình máy tính, ta cần thực hiện ba công đoạn liên tiếp:
+ Chọn kí tự thứ nhất: có 10 cách chọn (chọn 1 chữ số trong 10 chữ số từ 0 đến 9).
+ Chọn kí tự thứ hai: tương tự kí tự thứ nhất, có 10 cách chọn.
+ Chọn kí tự thứ ba: tương tự trên, có 10 cách chọn.
Vậy theo quy tắc nhân, có thể tạo được số mật khẩu là: 10 . 10 . 10 = 1 000 (mật khẩu).
b) Để lập một mật khẩu chương trình máy tính theo quy định mới, ta cần thực hiện ba công đoạn liên tiếp:
+ Chọn kí tự thứ nhất từ tập 26 chữ từ A đến Z: có 26 cách chọn.
+ Chọn kí tự thứ hai là chữ số: có 10 cách chọn.
+ Chọn kí tự thứ ba là chữ số: có 10 cách chọn.
Do đó, theo quy tắc nhân, số cách tạo mật khẩu mới là: 26 . 10 . 10 = 2 600 (mật khẩu).
Vậy có thể tạo được nhiều hơn quy định cũ số mật khẩu là: 2 600 – 1 000 = 1 600 (mật khẩu).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.