Câu hỏi:

11/07/2024 38,694

Bạn Hà có 5 viên bi xanh và 7 viên bi đỏ. Có bao nhiêu cách để Hà chọn ra đúng 2 viên bi khác màu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Để chọn ra 2 viên bi khác màu thì Hà phải chọn được 1 viên bi xanh và 1 viên bi đỏ.

+ Số cách chọn 1 viên bi xanh là: \(C_5^1\) = 5 (cách).

+ Số cách chọn 1 viên bi đỏ là: \(C_7^1\) = 7 cách.

Vậy theo quy tắc nhân, số cách chọn 2 viên bi khác màu là: 5 . 7 = 35 (cách).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Cách 1:

Để lập số tự nhiên có 3 chữ số khác nhau từ các chữ số 0, 1, 2, 3, 4, ta cần thực hiện 2 công đoạn: chọn chữ số hàng trăm và chọn 2 chữ số hàng chục và hàng đơn vị.

+ Chọn chữ số hàng trăm từ các chữ số 0, 1, 2, 3, 4, chữ số này phải khác 0, nên có 4 cách chọn.

+ Chọn 2 chữ số tiếp theo từ các chữ số 0, 1, 2, 3, 4, hai chữ số này khác nhau và khác chữ số hàng trăm, nên số cách chọn chính là số chỉnh hợp chập 2 của 4. Do đó có \(A_4^2 = 12\) cách chọn.

Vậy theo quy tắc nhân, có 4 . 12 = 48 số tự nhiên có 3 chữ số khác nhau được lập từ các chữ số 0, 1, 2, 3, 4.

Cách 2:

Mỗi cách lập một bộ gồm 3 chữ số từ tập các chữ số 0, 1, 2, 3, 4 là một chỉnh hợp chập 3 của 5 phần tử, nên số cách lập bộ số là \(A_5^3\) = 60 (cách).

Tuy nhiên, số tự nhiên có 3 chữ số thì chữ số hàng trăm phải khác 0.

Ta lập các số có dạng \(\overline {0ab} \) , thì số cách lập là: \(A_4^2 = 12\) (cách).

Vậy số các số tự nhiên có ba chữ số khác nhau, lập được từ các chữ số 0, 1, 2, 3, 4 là: 60 – 12 = 48 (số).

Lời giải

Hướng dẫn giải

Gọi số có 4 chữ số cần tìm có dạng: \(\overline {abcd} \) và a, b, c, d A = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}, a ≠ 0, a ≠ b ≠ c ≠ d.

Để \(\overline {abcd} \) chia hết cho 5 thì d phải thuộc tập hợp {0; 5}, do đó có 2 cách chọn d.

+ Trường hợp 1: d = 0.

Chọn a A \ {0}, a có 9 cách chọn.

Chọn 2 số b, c A \ {0; a} và sắp thứ tự chúng, nên có \(A_8^2 = 56\)cách chọn.

Do đó có: 9 . 56 = 504 số tự nhiên có 4 chữ số khác nhau có chữ số tận cùng là 0.

+ Trường hợp 2: d = 5.

Chọn a A \ {0; 5}, a có 8 cách chọn.

Chọn 2 số b, c A \ {5; a} và sắp thứ tự chúng, nên có \(A_8^2 = 56\)cách chọn.

Do đó có: 8 . 56 = 448 số tự nhiên có 4 chữ số khác nhau có chữ số tận cùng là 5.

Vì hai trường hợp là rời nhau, vậy theo quy tắc cộng có 504 + 448 = 952 số tự nhiên chia hết cho 5 mà mỗi số có bốn chữ số khác nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay