Câu hỏi:
11/07/2024 21,562
Số dân của một tỉnh ở thời điểm hiện tại là khoảng 800 nghìn người. Giả sử rằng tỉ lệ tăng dân số hằng năm của tỉnh đó là r%.
a) Viết công thức tính số dân của tỉnh đó sau 1 năm, sau 2 năm. Từ đó suy ra công thức tính số dân của tỉnh đó sau 5 năm nữa là \(P = 800{\left( {1 + \frac{r}{{100}}} \right)^5}\) (nghìn người).
b) Với r = 1,5, dùng hai số hạng đầu trong khai triển của (1 + 0,015)5, hãy ước tính số dân của tỉnh đó sau 5 năm nữa (theo đơn vị nghìn người).
Số dân của một tỉnh ở thời điểm hiện tại là khoảng 800 nghìn người. Giả sử rằng tỉ lệ tăng dân số hằng năm của tỉnh đó là r%.
a) Viết công thức tính số dân của tỉnh đó sau 1 năm, sau 2 năm. Từ đó suy ra công thức tính số dân của tỉnh đó sau 5 năm nữa là \(P = 800{\left( {1 + \frac{r}{{100}}} \right)^5}\) (nghìn người).
b) Với r = 1,5, dùng hai số hạng đầu trong khai triển của (1 + 0,015)5, hãy ước tính số dân của tỉnh đó sau 5 năm nữa (theo đơn vị nghìn người).
Câu hỏi trong đề: Bài tập Bài 25. Nhị thức Newton có đáp án !!
Quảng cáo
Trả lời:
Hướng dẫn giải
a) Để tính số dân năm sau, ta lấy số dân năm trước cộng với số dân tăng hằng năm (Số dân tăng hằng năm là r% của số dân năm trước).
Số dân của tỉnh đó sau 1 năm là:
\({P_1} = 800 + 800.r\% = 800\left( {1 + r\% } \right) = 800{\left( {1 + \frac{r}{{100}}} \right)^1}\) (nghìn người).
Số dân của tỉnh đó sau 2 năm là:
\({P_2} = {P_1} + {P_1}.r\% \)\( = 800{\left( {1 + \frac{r}{{100}}} \right)^1} + 800{\left( {1 + \frac{r}{{100}}} \right)^1}.\frac{r}{{100}}\)\( = 800{\left( {1 + \frac{r}{{100}}} \right)^1}\left( {1 + \frac{r}{{100}}} \right) = 800{\left( {1 + \frac{r}{{100}}} \right)^2}\) (nghìn người).
Do đó, công thức tính số dân của tỉnh đó sau 5 năm nữa là: \({P_5} = 800{\left( {1 + \frac{r}{{100}}} \right)^5}\) (nghìn người).
b) Với r = 1,5, suy ra \(\frac{r}{{100}} = \frac{{1,5}}{{100}} = 0,015\).
Ta có khai triển:
(1 + 0,015)5 = 15 + 5 . 14 . 0,015 + 10 . 13 . (0,015)2 + 10 . 12 . (0,015)3 + 5 . 1 . (0,015)4 + (0,015)5.
Do đó: (1 + 0,015)5 ≈ 15 + 5 . 14 . 0,015 = 1,075.
Số dân của tỉnh đó sau 5 năm nữa là:
P5 = 800 . (1 + 0,015)5 ≈ 800 . 1,075 = 860 (nghìn người)
Vậy số dân của tỉnh đó sau 5 năm nữa xấp xỉ khoảng 860 nghìn người.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Thay a = x và b = – 2 trong công thức khai triển của (a + b)4, ta được:
(x – 2)4 = x4 + 4x3 . (– 2) + 6x2 . (–2)2 + 4x . (– 2)3 + (– 2)4
= x4 – 8x3 + 24x2 – 32x + 16.
Lời giải
Hướng dẫn giải
Ta có: (3x – 1)5 = (3x)5 + 5 . (3x)4 . (– 1) + 10 . (3x)3 . (– 1)2 + 10 . (3x)2 . (– 1)3 + 5 . (3x) . (– 1)4 + (– 1)5.
Số hạng chứa x4 trong khai triển của (3x – 1)5 là: 5 . (3x)4 . (– 1) = – 405x4.
Vậy hệ số của x4 trong khai triển của (3x – 1)5 là: – 405.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.