Câu hỏi:

11/07/2024 81,777

Từ các chữ số: 1; 2; 3; 4; 5; 6.

a) Có thể lập được bao nhiêu số có ba chữ số khác nhau?

b) Có thể lập được bao nhiêu số có ba chữ số khác nhau và chia hết cho 3 ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

a) Mỗi cách lập một số có 3 chữ số khác nhau là việc lấy 3 phần tử từ tập chữ số: 1; 2; 3; 4; 5; 6, rồi sắp xếp chúng, nên mỗi cách lập số là một chỉnh hợp chập 3 của 6.

Vậy có \(A_6^3\) = 120 số có ba chữ số khác nhau thỏa mãn.

b) Số chia hết cho 3 thì tổng các chữ số của số đó phải chia hết cho 3.

Ta có các bộ ba có tổng chia hết cho 3 là: (1; 2; 3), (1; 2; 6), (1; 3; 5), (1; 5; 6), (2; 3; 4), (2; 4; 6), (3; 4; 5), (4; 5; 6).

Mỗi bộ ba có 3! cách sắp xếp để được một số chia hết cho 3.

Vậy số các số có 3 chữ số khác nhau được lập từ các chữ số: 1; 2; 3; 4; 5; 6, chia hết cho 3 là: 8 . 3! = 48 (số).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Lớp 10B có 40 học sinh gồm 25 nam và 15 nữ. Hỏi có bao nhiêu cách chọn 3 bạn tham gia vào đội thiện nguyện của trường trong mỗi trường hợp sau?

a) Ba học sinh được chọn là bất kì.

b) Ba học sinh được chọn gồm 1 nam và 2 nữ.

c) Có ít nhất một nam trong ba học sinh được chọn.

Xem đáp án » 11/07/2024 26,103

Câu 2:

Hệ số của x4  trong khai triển nhị thức (3x – 4)5 là

Xem đáp án » 26/06/2022 17,640

Câu 3:

Bạn An gieo một con xúc xắc hai lần. Số các trường hợp để tổng số chấm xuất hiện trên con xúc xắc bằng 8 qua hai lần gieo là

Xem đáp án » 26/06/2022 9,914

Câu 4:

A – Trắc nghiệm

Số cách cắm 4 bông hoa khác nhau vào 4 bình hoa khác nhau (mỗi bông hoa cắm vào một bình) là

Xem đáp án » 26/06/2022 9,164

Câu 5:

Trong khai triển nhị thức Newton của (2x + 3)5, hệ số của x4 hay hệ số của x3 lớn hơn?

Xem đáp án » 26/06/2022 8,496

Câu 6:

Tế bào A có 2n = 8 nhiễm sắc thể (NST), và nguyên phân 5 lần liên tiếp. Tế bào B có 2n = 14 NST và nguyên phân 4 lần liên tiếp. Tính và so sánh tổng số NST trong tế bào A và trong tế bào B được tạo ra.

Xem đáp án » 11/07/2024 8,458
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua