Câu hỏi:

14/01/2020 3,844

Cho biết I= 0π4sinx + 3cosxsinx +cosxdx = πa+lnb (0<a<1; 1<b<3). Tích a.b bằng bao nhiêu?

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gọi F(x) là một nguyên hàm của hàm số f(x) = 2x thỏa mãn F(0) = 1ln2. Tính giá trị biểu thức T = F(0)+ F(1) + ...+ F(2017)

Xem đáp án » 13/01/2020 44,829

Câu 2:

Kí hiệu F(x) là một nguyên hàm của hàm số f(x) = 1ex+1, biết F(0) = -ln2. Tìm tập nghiệm S của phương trình F(x) + ln(ex +1)

Xem đáp án » 03/06/2021 21,996

Câu 3:

Cho 0π2f(x) sinx dx = 0π2f''(x).sinx dx = f(0) = 1 Tính f'π2

Xem đáp án » 13/01/2020 14,882

Câu 4:

Nguyên hàm của hàm số y = 1x2-a2 (a > 0) là:

Xem đáp án » 13/01/2020 14,193

Câu 5:

Biết nguyên hàm của hàm số y = f(x) là F(x) = x2+4x+1. Khi đó f(3) bằng:

Xem đáp án » 13/01/2020 13,115

Câu 6:

Nếu f(x) = ax2+bx+c2x-1 là một nguyên hàm của hàm số  g(x) = 10x2-7x+22x-1 trên 12;+ thì a+b+c là:

Xem đáp án » 14/01/2020 12,751

Câu 7:

Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x2x2+1 trục Ox và đường thẳng x=1 bằng ab-ln1+bc với a,b,c là các nguyên số dương. Khi đó giá trị của a+b+c là:

Xem đáp án » 13/01/2020 12,405

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store