Câu hỏi:

29/06/2022 1,858

Cho đường tròn (O) và một điểm A nằm ngoài đường tròn (O). Qua điểm A vẽ hai tiếp tuyến AB, AC đến (O) (B, C là 2 tiếp điểm). Gọi H là giao điểm của OA và BC, qua H kẻ một đường thẳng vuông góc với OC cắt (O) tại M (M thuộc cung nhỏ BC), AM cắt (O) tại N (N khác M); gọi K là trung điểm MN.

a) Chứng minh tứ giác ABOC nội tiếp và AB.BM = AM.NB.

b) Chứng minh 5 điểm A, B, K, O, C cùng thuộc 1 đường tròn và AMH^=AON^.

c) Kẻ OI vuông góc NB tại I. Chứng minh: I, K, H thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho đường tròn (O) và một điểm A nằm ngoài đường tròn (O). Qua điểm A vẽ hai tiếp tuyến AB, AC đến (O) (B, C là 2 tiếp điểm). Gọi H là giao điểm của OA và BC, qua H kẻ một đường thẳng vuông góc với OC cắt (O) tại M (M thuộc cung nhỏ BC), AM cắt (O) tại N (N khác M); gọi K là trung điểm MN. a) Chứng minh tứ giác ABOC nội tiếp và AB.BM = AM.NB. b) Chứng minh 5 điểm A, B, K, O, C cùng thuộc 1 đường tròn và gocs AMH= góc AON . c) Kẻ OI vuông góc NB tại I. Chứng minh: I, K, H thẳng hàng. (ảnh 1)

a) Ta có:

OBA^= 90° (AB là tiếp tuyến của (O)).

OCA^= 90° (AC là tiếp tuyến của (O)).

Xét tứ giác ABOC có OBA^+OCA^= 90° + 90° = 180°.

Suy ra tứ giác ABOC nội tiếp.

Xét ∆ ABM và ∆ ANB có:

NAB^là góc chung.

ANB^=ABM^ (Góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cùng chắn cung BM).

Suy ra ∆ABM đồng dạng ∆ANB (g.g)

Từ đó suy ra AMAB=BMNB AB.BM = AM.NB (đpcm)

b) Tứ giác ABOC nội tiếp có OBA^= 90° suy ra OA là đường kính cũng suy ra tứ giác ABOC nội tiếp đường tròn đường kính OA.

Ta có OK MN (tính chất đường kính đi qua trung điểm dây cung thì vuông góc với dây đó).

Suy ra OKM^=OKA^=90° dẫn đến K thuộc đường tròn đường kính OA.

Vậy 5 điểm A, B, C, O, K cùng thuộc 1 đường tròn đường kính OA.

∆ABM  ∆ANB (cmt) nên ta có: ABAN=AMAB

Û AB2 = AM.AN.

Mà ta cũng có AB2 = AH.AO (∆ ABO vuông tại B có đường cao BH).

Suy ra AM.AN = AH.AO Û AMAO=AHAN.

Xét ∆AMH và ∆AON có:

OAN^là góc chung

AMAO=AHAN (cmt)

Suy ra ∆AMH đồng dạng ∆AON (c.g.c)

Từ đó suy ra AMH^=AON^ (hai góc tương ứng).

c) Ta có MH // AC (cùng vuông góc với OC).

Suy ra KMH^=KAC^(hai góc đồng vị).

Ta lại có KBC^=KAC^ (tứ giác KBAC nội tiếp)

Từ đó suy ra KBH^=KMH^ suy ra tứ giác KBMH nội tiếp.

MKH^=MBH^(tứ giác KBMH nội tiếp)

MNC^=MBC^(tứ giác NBMC nội tiếp đường tròn (O))

MKH^=MNC^ KH//NC      (1)

Ta có H là trung điểm BC (tính chất hai tiếp tuyến cắt nhau).

I là trung điểm NB (đường kính vuông góc với dây cung thì đi qua trung điểm của dây).

IH là đường trung bình của tam giác NBC IH // NC                 (2)

Từ (1) và (2) suy ra K, H, I thẳng hàng (theo tiên đề Ơ-clit).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Bảng giá trị:

x

–2

–1

0

1

2

y = x2

4

1

0

1

4

Trên mặt phẳng tọa độ lấy các điểm A(–2; 4); B(–1; 1); O(0; 0); C(1; 1); D(2; 4).

Cho Parabol (P): y = x2 và đường thẳng (d): y = –x + 2. a) Vẽ (P) trên mặt phẳng tọa độ Oxy. b) Tìm tọa độ giao điểm của (P) và (d) bằng phép tính. (ảnh 1)

b) Phương trình hoành độ giao điểm của (P) và (d) là:

x2 = –x + 2

Û x2 + x – 2 = 0

Û x2 + 2x – x – 2 = 0

Û x( x + 2) – (x + 2) = 0

Û (x – 1)(x + 2) = 0

Û [x=1x=2

Với x = 1 thì y = –x + 2 = –1 + 2 = 1.

Do đó, ta có tọa độ giao điểm của (P) và (d) là A(1; 1).

Với x = –2 thì y = –x + 2 = –(–2) + 2 = 4.

Do đó, ta có tọa độ giao điểm của (P) và (d) là B(–2; 4).

Vậy hai đồ thị hàm số trên có 2 giao điểm là A(1;1) và B(–2; 4).

Lời giải

a) Ta có: ∆ = m2 – 4.2.(–5) = m2 + 40

Vì ∆ = m2 + 40 > 0 (đúng với mọi giá trị của m).

Nên phương trình (1) luôn có 2 nghiệm với mọi m (điều phải chứng minh).

b) A = x12 – x1 + x22 – x2

= (x12 + x22) – (x1 + x2)

= (x1 + x2)2 – 2x1.x2 – (x1 + x2)          (2)

Theo hệ thức Vi-et, ta có: [x1+x2=ba=m2x1.x2=ca=52

Thay vào (2) ta được:

A = (m2)22.(52)m2=m24m2+5.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP