Câu hỏi:

29/06/2022 1,519 Lưu

Cho (P): y = 12x2 và (d): y = x – 4

a. Vẽ (P) và (d) trên cùng một mặt phẳng tọa độ.

b. Tìm tọa độ giao điểm của (P) và (d) bằng phép tính.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vẽ (P):

Bảng giá trị:

x

−2

−1

0

1

2

y = 12x2

−2

0

−2

Trên mặt phẳng tọa độ lấy các điểm:

 A(−2; −2); B(1;  12); O(0; 0); C(1;  12); D(2; −2).

Vẽ (d)

Đường thẳng (d): y = x – 4 có a = 1, b = −4

đi qua hai điểm có tọa độ (0; b) và (ba;  0).

Do đó, hai điểm thuộc đường thẳng (d) là M(0; −4) và N(4; 0).

Cho (P): y =  -1/2x^2 và (d): y = x – 4  a. Vẽ (P) và (d) trên cùng một mặt phẳng tọa độ. b. Tìm tọa độ giao điểm của (P) và (d) bằng phép tính. (ảnh 1)

b. Phương trình hoành độ giao điểm của (P) và (d) là:

12x2=x4

Û x2 + 2x – 8 = 0

Û x2 + 4x – 2x – 8 = 0

Û x(x + 4) – 2(x + 4) = 0

Û (x + 4)(x – 2) = 0

Û [x=4x=2

Với x = −4 thì y = x – 4 = −4 – 4 = −8.

Do đó, ta có tọa độ giao điểm của (P) và (d) là A(−4; −8).

Với x = 2 thì y = x – 4 = 2 – 4 = −2.

Do đó, ta có tọa độ giao điểm của (P) và (d) là B(2; −2).

Vậy hai đồ thị hàm số trên có 2 giao điểm là A(−4; 8) và B(2; −2).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường tròn (O) và một điểm A nằm ngoài đường tròn (O). Qua điểm A vẽ hai tiếp tuyến AB, AC đến (O) (B, C là tiếp điểm) và cát tuyến AMN không qua O (M nằm giữa A và N). Gọi H là giao điểm của OA và BC. Chứng minh rằng. (ảnh 1)

a. Ta có:

OBA^= 90° (AB là tiếp tuyến của (O))

OCA^= 90° (AC là tiếp tuyến của (O))

Xét tứ giác ABOC có OBA^+OCA^= 90° + 90° = 180°

Suy ra tứ giác ABOC nội tiếp.

b. Ta có:

AB = AC (tính chất hai tiếp tuyến cắt nhau)

OB = OC = R.

Suy ra OA là đường trung trực của BC dẫn đến OA vuông góc BC.

c. Xét ∆ ABM và ∆ ANB có:

NAB^ là góc chung

ANB^=ABM^ (Góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cùng chắn cung BM)

Suy ra ∆ ABM  ∆ ANB (g.g)

Từ đó suy ra ABAN=AMABAB2=AM.AN(điều phải chứng minh)

d. ∆ ABM đồng dạng ∆ ANB (cmt) nên ta có:

AB2 = AM.AN

Mà ta cũng có AB2 = AH.AO (∆ ABO vuông tại B có đường cao BH)

Suy ra AM.AN = AH.AO Û AMAO=AHAN

Xét ∆ AMH và ∆ AON có:

OAN^ là góc chung

AMAO=AHAN (cmt)

Suy ra ∆ AMH  ∆ AON (c.g.c)

Từ đó suy ra AMH^=AON^ (hai góc tương ứng).

 

Lời giải

Đáp án đúng là: A

Thay giá trị của điểm (−1; 2) vào đổ thì hàm số y = ax2 ta được:

2 = a.(−1)2 Û 2 = a.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP