Câu hỏi:

06/07/2022 385 Lưu

Miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x - y < 0\\x + 3y > - 1\\x + y < 3\end{array} \right.\) là miền không gạch chéo (không kể bờ) của hình vẽ nào trong các hình vẽ sau?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

+ Ta có 0 – 1= –1 < 0 nên điểm (0 ; 1) thuộc miền nghiệm của bất phương trình x – y < 0 .

Do đó miền nghiệm của bất phương trình x – y < 0 là nửa mặt phẳng bờ là đường thẳng x – y = 0, chứa điểm (0; 1) (không chứa bờ).

+ Ta có 0 + 3.0 = 0 > –1 nên điểm O(0 ; 0) thuộc miền nghiệm của bất phương trình x + 3y > –1 .

Do đó miền nghiệm của bất phương trình x + 3y > –1 là nửa mặt phẳng bờ là đường thẳng x + 3y = –1, chứa điểm O (không chứa bờ).

+ Ta có 0 + 0 = 0 < 3 nên điểm O(0 ; 0) thuộc miền nghiệm của bất phương trình x + y < 3.

Do đó miền nghiệm của bất phương trình x + y < 3 là nửa mặt phẳng có bờ là đường thẳng x + y = 3, chứa điểm O (không chứa bờ).

Ta có hình ảnh biểu diễn miền nghiệm của hệ là miền không gạch chéo trong hình sau:

Miền nghiệm của hệ bất phương trình x - y < 0; x + 3y > -1 và x + y < 3 (ảnh 1)

Do đó ta chọn đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

Các hệ bất phương trình \(\left\{ \begin{array}{l}{x^2} + 3y \ge 2\\2x + y \le - 1\end{array} \right.\); \(\left\{ \begin{array}{l}4x + 3y - 1 \ge 0\\x + {y^3} > 0\end{array} \right.\); \(\left\{ \begin{array}{l} - {x^2} + 3y \ge 5\\x + {y^3} \le 1\end{array} \right.\) đều chứa các bất phương trình bậc hai hoặc bậc ba như : x2 + 3y ≥ 2 ; x + y3 > 0 ; – x2 + 3y ≥ 5.

Do đó, các hệ bất phương trình \(\left\{ \begin{array}{l}{x^2} + 3y \ge 2\\2x + y \le - 1\end{array} \right.\); \(\left\{ \begin{array}{l}4x + 3y - 1 \ge 0\\x + {y^3} > 0\end{array} \right.\); \(\left\{ \begin{array}{l} - {x^2} + 3y \ge 5\\x + {y^3} \le 1\end{array} \right.\) không phải là hệ bất phương trình bậc nhất hai ẩn.

Hệ \(\left\{ \begin{array}{l}x + 3y \ge 0\\2x \le 0\end{array} \right.\) có hai bất phương trình x + 3y ≥ 0 và 2x ≤ 0 đều là các bất phương trình bậc nhất hai ẩn.

Vậy ta chọn đáp án A.

Lời giải

Đáp án đúng là: C

+ Ta có : –3. (–1)  + 2 = 5 > 2 và 1 + 2.2 = 3 > 1.

Do đó cặp số (–1 ; 2) không là nghiệm của bất phương trình x + 2y ≤ 1.

Vậy nên cặp số (–1 ; 2) không là nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l} - 3x + y > - 2\\x + 2y \le 1\end{array} \right.\).

Suy ra điểm M(–1 ; 2) không thuộc miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l} - 3x + y > - 2\\x + 2y \le 1\end{array} \right.\).

+ Ta có : –3. 0 + (–1)= –1 > 2 và 0 + 2. (–1) = –2 < 1.

Do đó cặp số (0; –1) là nghiệm của cả hai bất phương trình –3x + y > –2 và x + 2y ≤ 1.

Vậy nên cặp số (0; –1) là nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l} - 3x + y > - 2\\x + 2y \le 1\end{array} \right.\).

Suy ra điểm M(0; –1)  thuộc miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l} - 3x + y > - 2\\x + 2y \le 1\end{array} \right.\).

+ Ta có : –3. + 0 = 0 > 2 và 0 + 2.0 = 0 < 1.

Do đó cặp số (0 ; 0) là nghiệm của cả hai bất phương trình –3x + y > –2 và x + 2y ≤ 1.

Vậy nên cặp số (0 ; 0) là nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l} - 3x + y > - 2\\x + 2y \le 1\end{array} \right.\).

Suy ra điểm O(0 ; 0) thuộc miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l} - 3x + y > - 2\\x + 2y \le 1\end{array} \right.\).

Vậy hai điểm M(0; –1)  và O(0 ; 0) thuộc miền nghiệm của hệ \(\left\{ \begin{array}{l} - 3x + y > - 2\\x + 2y \le 1\end{array} \right.\).

Do đó ta chọn đáp án C.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP