Câu hỏi:

06/07/2022 212

Miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x - y < 0\\x + 3y > - 1\\x + y < 3\end{array} \right.\) là miền không gạch chéo (không kể bờ) của hình vẽ nào trong các hình vẽ sau?

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

+ Ta có 0 – 1= –1 < 0 nên điểm (0 ; 1) thuộc miền nghiệm của bất phương trình x – y < 0 .

Do đó miền nghiệm của bất phương trình x – y < 0 là nửa mặt phẳng bờ là đường thẳng x – y = 0, chứa điểm (0; 1) (không chứa bờ).

+ Ta có 0 + 3.0 = 0 > –1 nên điểm O(0 ; 0) thuộc miền nghiệm của bất phương trình x + 3y > –1 .

Do đó miền nghiệm của bất phương trình x + 3y > –1 là nửa mặt phẳng bờ là đường thẳng x + 3y = –1, chứa điểm O (không chứa bờ).

+ Ta có 0 + 0 = 0 < 3 nên điểm O(0 ; 0) thuộc miền nghiệm của bất phương trình x + y < 3.

Do đó miền nghiệm của bất phương trình x + y < 3 là nửa mặt phẳng có bờ là đường thẳng x + y = 3, chứa điểm O (không chứa bờ).

Ta có hình ảnh biểu diễn miền nghiệm của hệ là miền không gạch chéo trong hình sau:

Miền nghiệm của hệ bất phương trình x - y < 0; x + 3y > -1 và x + y < 3 (ảnh 1)

Do đó ta chọn đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn ?

Xem đáp án » 06/07/2022 625

Câu 2:

Cho hệ bất phương trình \(\left\{ \begin{array}{l} - x + 2y \ge 2\\2x + y \le - 1\end{array} \right.\). Điểm nào sau đây thuộc miền nghiệm của hệ bất phương trình đã cho?

Xem đáp án » 06/07/2022 424

Câu 3:

Cho hệ bất phương trình \(\left\{ \begin{array}{l} - 3x + y > - 2\\x + 2y \le 1\end{array} \right.\). Và các điểm sau: M(–1 ; 2), N(0; –1), O(0; 0). Có mấy điểm thuộc miền nghiệm của hệ bất phương trình đã cho?

Xem đáp án » 06/07/2022 419

Câu 4:

Giá trị nhỏ nhất Fmin của biểu thức F= –x + y trên miền xác định bởi hệ \(\left\{ {\begin{array}{*{20}{c}}{ - 2x + y \ge 2}\\{y - x \le 4}\\{x + 2y \ge 5}\end{array}} \right.\) là:

Xem đáp án » 06/07/2022 369

Câu 5:

Tìm khẳng định sai trong các khẳng định sau:

Xem đáp án » 06/07/2022 355

Câu 6:

Biểu thức F = 2x + y đạt giá trị nhỏ nhất với điều kiện \[\left\{ {\begin{array}{*{20}{c}}{2x - y \le 2}\\{x - 2y \le 2}\\{y \ge 0}\\{x \ge 0}\end{array}} \right.\] tại điểm có toạ độ là:

Xem đáp án » 06/07/2022 275

Câu 7:

Trong các khẳng định sau, khẳng định nào đúng?

Xem đáp án » 06/07/2022 257

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn