Câu hỏi:

06/07/2022 361 Lưu

Miền không gạch chéo trong hình vẽ dưới đây (không chứa bờ), biểu diễn tập nghiệm của hệ bất phương trình nào trong các hệ bất phương trình sau?

Miền không gạch chéo trong hình vẽ dưới đây (không chứa bờ), biểu diễn (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Đường thẳng x – y = –2 chia mặt phẳng tọa độ thành hai nửa mặt phẳng.

Xét điểm O(0; 0), ta có : 0 – 0 = 0 > –2 .

Mặt khác điểm O thuộc miền nghiệm của hệ bất phương trình cần tìm. Do đó ta có bất phương trình thứ nhất của hệ là x – y > –2.

Đường thẳng 2x – y = 1 chia mặt phẳng tọa độ thành hai nửa mặt phẳng.

Xét điểm O(0; 0), ta có : 2.0 – 0 = 0 < 1 .

Mặt khác điểm O thuộc miền nghiệm của hệ bất phương trình cần tìm. Do đó ta có bất phương trình thứ hai của hệ là 2x – y < 1.

Suy ra hệ cần tìm là : \(\left\{ \begin{array}{l}x - y > - 2\\2x - y < 1\end{array} \right.\)

Ta chọn đáp án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

Các hệ bất phương trình \(\left\{ \begin{array}{l}{x^2} + 3y \ge 2\\2x + y \le - 1\end{array} \right.\); \(\left\{ \begin{array}{l}4x + 3y - 1 \ge 0\\x + {y^3} > 0\end{array} \right.\); \(\left\{ \begin{array}{l} - {x^2} + 3y \ge 5\\x + {y^3} \le 1\end{array} \right.\) đều chứa các bất phương trình bậc hai hoặc bậc ba như : x2 + 3y ≥ 2 ; x + y3 > 0 ; – x2 + 3y ≥ 5.

Do đó, các hệ bất phương trình \(\left\{ \begin{array}{l}{x^2} + 3y \ge 2\\2x + y \le - 1\end{array} \right.\); \(\left\{ \begin{array}{l}4x + 3y - 1 \ge 0\\x + {y^3} > 0\end{array} \right.\); \(\left\{ \begin{array}{l} - {x^2} + 3y \ge 5\\x + {y^3} \le 1\end{array} \right.\) không phải là hệ bất phương trình bậc nhất hai ẩn.

Hệ \(\left\{ \begin{array}{l}x + 3y \ge 0\\2x \le 0\end{array} \right.\) có hai bất phương trình x + 3y ≥ 0 và 2x ≤ 0 đều là các bất phương trình bậc nhất hai ẩn.

Vậy ta chọn đáp án A.

Câu 2

Lời giải

Đáp án đúng là: C

+ Vì \(\left\{ \begin{array}{l}x + y \ge - 1\\{y^2} - 1 \le 0\end{array} \right.\) chứa bất phương trình bậc hai y2 – 1 ≤ 0 nên hệ này không phải là hệ bất phương trình bậc nhất hai ẩn.

Do đó khẳng định A đúng.

+ Vì \(\left\{ \begin{array}{l}x \ge 1 + y\\5x + y < 0\end{array} \right.\) chứa hai bất phương trình x ≥ 1 + y và 5x + y < 0 đều là các bất phương trình bậc nhất hai ẩn, nên hệ này là hệ bất phương trình bậc nhất hai ẩn.

Do đó khẳng định B đúng.

+ Vì \(\left\{ \begin{array}{l}x + 1 + y > 0\\{x^2} + y < 0\end{array} \right.\) chứa bất phương trình bậc hai x2

+ y < 0 nên hệ này không phải là hệ bất phương trình bậc nhất hai ẩn.

Do đó khẳng định C sai.

+ Vì \(\left\{ \begin{array}{l}\frac{1}{2}x + 2y < 7\\x + 3y \le 0\end{array} \right.\)chứa hai bất phương trình \(\frac{1}{2}x + y < 7\) và x + 3y ≤ 0 đều là các bất phương trình bậc nhất hai ẩn nên hệ này là hệ bất phương trình bậc nhất hai ẩn.

Do đó khẳng định D đúng.

Vậy ta chọn đáp án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP