Câu hỏi:

06/07/2022 379 Lưu

Một người nông dân dự định quy hoạch x sào đất trồng rau cải và y sào đất trồng cà chua. Biết rằng người nông dân chỉ có tối đa 900 nghìn đồng để mua hạt giống và giá tiền hạt giống cho mỗi sào đất trồng rau cải là 100 nghìn đồng, mỗi sào đất trồng cà chua là 50 nghìn đồng. Trong các hệ bất phương trình sau, hệ nào mô tả các ràng buộc đối với x, y ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Do x, y lần lượt là số sào đất trồng rau cả và cà chua nên hiển nhiên ta có: x ≥ 0 và y ≥ 0.

Số tiền dùng để mua hạt giống cho x sào đất trồng rau cải là : 100x nghìn đồng.

Số tiền dùng để mua hạt giống cho y sào đất trồng cà chua là : 50y nghìn đồng.

Tổng số tiền người nông dân dùng mua hạt giống là: 100x + 50y nghìn đồng.

Do người nông dân chỉ có tối đa 900 nghìn đồng để mua hạt giống nên ta có :

100x + 50y ≤ 900 2x + y ≤ 18.

Vậy ta có hệ bất phương trình mô tả ràng buộc đối với x, y là : \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\2x + y \le 18\end{array} \right.\).

Vậy ta chọn đáp án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

Các hệ bất phương trình \(\left\{ \begin{array}{l}{x^2} + 3y \ge 2\\2x + y \le - 1\end{array} \right.\); \(\left\{ \begin{array}{l}4x + 3y - 1 \ge 0\\x + {y^3} > 0\end{array} \right.\); \(\left\{ \begin{array}{l} - {x^2} + 3y \ge 5\\x + {y^3} \le 1\end{array} \right.\) đều chứa các bất phương trình bậc hai hoặc bậc ba như : x2 + 3y ≥ 2 ; x + y3 > 0 ; – x2 + 3y ≥ 5.

Do đó, các hệ bất phương trình \(\left\{ \begin{array}{l}{x^2} + 3y \ge 2\\2x + y \le - 1\end{array} \right.\); \(\left\{ \begin{array}{l}4x + 3y - 1 \ge 0\\x + {y^3} > 0\end{array} \right.\); \(\left\{ \begin{array}{l} - {x^2} + 3y \ge 5\\x + {y^3} \le 1\end{array} \right.\) không phải là hệ bất phương trình bậc nhất hai ẩn.

Hệ \(\left\{ \begin{array}{l}x + 3y \ge 0\\2x \le 0\end{array} \right.\) có hai bất phương trình x + 3y ≥ 0 và 2x ≤ 0 đều là các bất phương trình bậc nhất hai ẩn.

Vậy ta chọn đáp án A.

Câu 2

Lời giải

Đáp án đúng là: C

+ Vì \(\left\{ \begin{array}{l}x + y \ge - 1\\{y^2} - 1 \le 0\end{array} \right.\) chứa bất phương trình bậc hai y2 – 1 ≤ 0 nên hệ này không phải là hệ bất phương trình bậc nhất hai ẩn.

Do đó khẳng định A đúng.

+ Vì \(\left\{ \begin{array}{l}x \ge 1 + y\\5x + y < 0\end{array} \right.\) chứa hai bất phương trình x ≥ 1 + y và 5x + y < 0 đều là các bất phương trình bậc nhất hai ẩn, nên hệ này là hệ bất phương trình bậc nhất hai ẩn.

Do đó khẳng định B đúng.

+ Vì \(\left\{ \begin{array}{l}x + 1 + y > 0\\{x^2} + y < 0\end{array} \right.\) chứa bất phương trình bậc hai x2

+ y < 0 nên hệ này không phải là hệ bất phương trình bậc nhất hai ẩn.

Do đó khẳng định C sai.

+ Vì \(\left\{ \begin{array}{l}\frac{1}{2}x + 2y < 7\\x + 3y \le 0\end{array} \right.\)chứa hai bất phương trình \(\frac{1}{2}x + y < 7\) và x + 3y ≤ 0 đều là các bất phương trình bậc nhất hai ẩn nên hệ này là hệ bất phương trình bậc nhất hai ẩn.

Do đó khẳng định D đúng.

Vậy ta chọn đáp án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP