Câu hỏi:

06/07/2022 168

Cho hệ \[\left\{ \begin{array}{l}x + y \le 1\\4x\,\, - \,y\, \le 2\\x \ge 0\end{array} \right.\]. Giá trị lớn nhất của biểu thức P = x – y trên miền nghiệm của hệ đã cho là:

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Ta biểu diễn miền nghiệm của hệ đã cho trên mặt phẳng tọa độ, ta được hình ảnh sau:

Cho hệ x + y < = 1, 4x - y < = 2vaf x > = 0. Giá trị lớn nhất của biểu thức (ảnh 1)

Khi đó miền tam giác ABC (bao gồm các cạnh) là miền nghiệm của hệ bất phương trình đã cho.

Các đỉnh A, B, C có tọa độ: A(0; 1); B(0; –2); C\(\left( {\frac{3}{5};\frac{2}{5}} \right)\).

Ta tính giá trị của P = x – y tại các đỉnh của tam giác tam giác ABC.

Tại A(0; 1) ta có P = 0 – 1= – 1;

Tại B(0; –2) ta có P = 0 – (– 2) = 2;

Tại C\(\left( {\frac{3}{5};\frac{2}{5}} \right)\) ta có P = \(\frac{3}{5}\) \(\frac{2}{5}\)  = \(\frac{1}{5}\);

Suy ra P = x – y lớn nhất bằng 2 tại B(0; –2).

Do đó ta chọn đáp án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn ?

Xem đáp án » 06/07/2022 659

Câu 2:

Cho hệ bất phương trình \(\left\{ \begin{array}{l} - 3x + y > - 2\\x + 2y \le 1\end{array} \right.\). Và các điểm sau: M(–1 ; 2), N(0; –1), O(0; 0). Có mấy điểm thuộc miền nghiệm của hệ bất phương trình đã cho?

Xem đáp án » 06/07/2022 453

Câu 3:

Cho hệ bất phương trình \(\left\{ \begin{array}{l} - x + 2y \ge 2\\2x + y \le - 1\end{array} \right.\). Điểm nào sau đây thuộc miền nghiệm của hệ bất phương trình đã cho?

Xem đáp án » 06/07/2022 449

Câu 4:

Tìm khẳng định sai trong các khẳng định sau:

Xem đáp án » 06/07/2022 392

Câu 5:

Giá trị nhỏ nhất Fmin của biểu thức F= –x + y trên miền xác định bởi hệ \(\left\{ {\begin{array}{*{20}{c}}{ - 2x + y \ge 2}\\{y - x \le 4}\\{x + 2y \ge 5}\end{array}} \right.\) là:

Xem đáp án » 06/07/2022 383

Câu 6:

Biểu thức F = 2x + y đạt giá trị nhỏ nhất với điều kiện \[\left\{ {\begin{array}{*{20}{c}}{2x - y \le 2}\\{x - 2y \le 2}\\{y \ge 0}\\{x \ge 0}\end{array}} \right.\] tại điểm có toạ độ là:

Xem đáp án » 06/07/2022 300

Câu 7:

Miền không gạch chéo trong hình vẽ dưới đây (không chứa bờ), biểu diễn tập nghiệm của hệ bất phương trình nào trong các hệ bất phương trình sau?

Miền không gạch chéo trong hình vẽ dưới đây (không chứa bờ), biểu diễn (ảnh 1)

Xem đáp án » 06/07/2022 269

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store