Câu hỏi:
08/07/2022 2,779Gieo một đồng xu và một con xúc xắc cân đối đồng chất một lần. Số phần tử của không gian mẫu là:
Quảng cáo
Trả lời:
Đáp án đúng là: B
Gieo đồng xu có 2 khả năng có thể sảy ra (hoặc là sấp hoặc là ngửa)
Gieo súc sắc có 6 khả năng có thể sảy ra ({1 chấm, 2 chấm, 3 chấm, 4 chấm, 5 chấm, 6 chấm}).
Số phần tử của không gian mẫu n(Ω) = 2.6 = 12.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Số phần tử của không gian mẫu n(Ω) = 6.6 = 36 (vì mỗi lần gieo có 6 khả năng có thể sảy ra)
Gọi A là biến cố tổng số chấm của hai lần gieo nhỏ hơn 6. Ta liệt kê các phần tử của biến cố A như sau: A = {(1; 1); (1; 2); (1; 3); (1; 4); (2; 1); (2; 2); (2; 3); (3; 1); (3; 2); (4; 1)}.
Vậy số phần tử của biến cố A là: n(A) = 10
Xác suất của biến cố A là: P(A) = \(\frac{{10}}{{36}} = \frac{5}{{18}}\).
Lời giải
Đáp án đúng là: D
Gieo một con xúc xắc cân đối đồng chất 2 lần nên ta có
Lần 1 có 6 khả năng sảy ra (số mặt xuất hiện từ 1 chấm đến 6 chấm).
Lần 2 có 6 khả năng sảy ra (số mặt xuất hiện từ 1 chấm đến 6 chấm).
Vậy số phần tử của không gian mẫu n(Ω) = 6.6 = 36.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.