Câu hỏi:
13/07/2024 15,606Cho tam giác ABC vuông tại A và có đường cao AH.
a) Chứng minh ∆HBA đồng dạng ∆ABC.
b) Cho biết AB = 6cm, AC = 8cm. Hãy tính độ dài BC, AH, BH và CH?Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
a) Xét ∆HBA và ∆ABC có:
chung
(vì AH là đường cao của ∆ABC)
Do đó ∆HBA ∆ABC (g.g).b) Áp dụng định lý Py-ta-go trong ∆ABC vuông tại A có:
BC2 = AB2 + AC2 = 62 + 82 = 100
Suy ra BC = 10 cm.
Ta có ∆ABC vuông tại A. Khi đó diện tích tam giác ABC là:
SABC = AB.AC = .6.8 = 24 (cm2)
Mặc khác, ∆ABC có AH là đường cao kẻ từ A ứng với cạnh BC nên ta có:
SABC = AH.BC = 24
(cm)
Xét ∆HBA vuông tại H, áp dụng định lý Py-ta-go, ta có:
AB2 = AH2 + HB2
Suy ra HB2 = AB2 – AH2 = 62 – 4,82 = 12,96.
Do đó HB = 3,6 cm.
Ta có: BC = BH + CH
Suy ra CH = BC – BH = 10 – 3,6 = 6,4 (cm).
Vậy độ dài BC, AH, BH và CH lần lượt là: 10 cm; 4,8 cm; 3,6 cm và 6,4 cm.CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Giải bài toán sau bằng cách lập phương trình.
Một ôtô đi từ A đến B với vận tốc 60 km/h và quay từ B về A với vận tốc 40 km/h.
Tính quãng đường AB. Biết thời gian cả đi lẫn về là 7 giờ 30 phút.Câu 6:
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 1)
Bộ 5 đề thi giữa kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 2)
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận