Câu hỏi:
15/07/2022 273Số cuộn phim mà 20 nhà nhiếp ảnh nghiệp dư sử dụng trong một tháng được cho trong bảng sau:
0 |
5 |
7 |
6 |
2 |
5 |
9 |
7 |
6 |
9 |
20 |
6 |
10 |
7 |
5 |
8 |
9 |
7 |
8 |
5 |
Giá trị ngoại lệ trong mẫu số liệu trên là:
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Ta có bảng tần số sau:
Số cuộn phim |
0 |
2 |
5 |
6 |
7 |
8 |
9 |
10 |
20 |
|
Số nhiếp ảnh gia |
1 |
1 |
4 |
3 |
4 |
2 |
3 |
1 |
1 |
n = 20 |
- Vì cỡ mẫu n = 20 = 2.10 là số chẵn. Nên giá trị tứ phân vị thứ hai bằng trung bình cộng của số liệu thứ 10 và số liệu thứ 11.
Khi sắp xếp mẫu số liệu đã cho theo thứ tự không giảm, ta được số liệu thứ 10 và số liệu thứ 11 cùng bằng 7.
Do đó Q2 = 7.
- Ta tìm tứ phân vị thứ nhất là trung vị của nửa mẫu số liệu bên trái Q2.
Vì cỡ mẫu lúc này n = 10 = 2.5 là số chẵn, nên giá trị tứ phân vị thứ nhất là trung bình cộng của số liệu thứ 5 và số liệu thứ 6.
Khi sắp xếp mẫu số liệu theo thứ tự không giảm, ta được số liệu thứ 5 và số liệu thứ 6 cùng bằng 5.
Do đó Q1 = 5.
- Ta tìm tứ phân vị thứ ba là trung vị của nửa mẫu số liệu bên phải Q2.
Vì cỡ mẫu lúc này n = 10 = 2.5 là số chẵn, nên giá trị tứ phân vị thứ ba là trung bình cộng của số liệu thứ 5 và số liệu thứ 6 (tính từ số liệu thứ 11 trở đi). Tức là giá trị tứ phân vị thứ ba là trung bình cộng của số liệu thứ 15 và số liệu thứ 16.
Khi sắp xếp mẫu số liệu theo thứ tự không giảm, ta được số liệu thứ 15 và số liệu thứ 16 lần lượt là 8 và 9.
Do đó Q3 = (8 + 9) : 2 = 8,5.
Ta suy ra khoảng tứ phân vị ∆Q = Q3 – Q1 = 8,5 – 5 = 3,5.
Ta có Q3 + 1,5.∆Q = 13,75 và Q1 – 1,5.∆Q = – 0,25.
Số liệu x trong mẫu là giá trị ngoại lệ nếu x > Q3 + 1,5.∆Q (1) hoặc x < Q1 – 1,5.∆Q (2)
Quan sát bảng số liệu ta thấy có số liệu x = 20 thoả mãn điều kiện (1) : 20 > 13,75.
Vậy mẫu số liệu có giá trị ngoại lệ là 20.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho dãy số liệu thống kê sau: 1; 2; 3; 4; 5; 6; 7; 8; 9. Phương sai và độ lệch chuẩn của mẫu số liệu trên lần lượt là:
Câu 3:
Số học sinh giỏi của 30 lớp ở một trường Trung học phổ thông được ghi lại trong bảng sau:
0 |
2 |
1 |
0 |
0 |
3 |
0 |
0 |
1 |
1 |
0 |
1 |
6 |
6 |
0 |
1 |
5 |
2 |
4 |
5 |
1 |
0 |
1 |
2 |
4 |
0 |
3 |
3 |
1 |
0 |
Tìm khoảng tứ phân vị ∆Q của mẫu số liệu trên.
Câu 5:
Cho một mẫu dữ liệu đã được sắp xếp theo thứ tự không giảm x1 ≤ x2 ≤ x3 ≤ ... ≤ xn. Khi đó khoảng biến thiên R của mẫu số liệu bằng:
Câu 6:
Một nhà nghiên cứu ghi lại tuổi của 30 bệnh nhân mắc bệnh đau mắt hột như sau:
21 |
17 |
22 |
18 |
20 |
17 |
15 |
13 |
15 |
20 |
15 |
12 |
18 |
17 |
25 |
17 |
21 |
15 |
12 |
18 |
16 |
23 |
14 |
18 |
19 |
13 |
16 |
19 |
18 |
17 |
Khoảng biến thiên R của mẫu số liệu trên là:
Câu 7:
Số tiền nước phải nộp (đơn vị: nghìn đồng) của 5 hộ gia đình là: 56; 45; 103; 239; 125. Độ lệch chuẩn gần bằng:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
75 câu trắc nghiệm Vectơ nâng cao (P1)
Bài tập Xác định tính hợp lí của dữ liệu trong bảng thống kê (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
15 câu Trắc nghiệm Toán 10 Kết nối tri thức Số gần đúng và sai số có đáp án
Đề thi Giữa kì 1 Toán 10 Kết nối tri thức có đáp án - Đề 1
về câu hỏi!