Câu hỏi:
15/07/2022 692
Số phiếu dự đoán đúng của 26 trận bóng đá học sinh được cho trong bảng sau:
54
75
121
142
154
159
171
189
203
211
225
247
251
259
264
278
290
305
315
322
355
367
388
450
490
510
Tìm trung vị Me và mốt của bảng số liệu trên.
Số phiếu dự đoán đúng của 26 trận bóng đá học sinh được cho trong bảng sau:
54 |
75 |
121 |
142 |
154 |
159 |
171 |
189 |
203 |
211 |
225 |
247 |
251 |
259 |
264 |
278 |
290 |
305 |
315 |
322 |
355 |
367 |
388 |
450 |
490 |
510 |
Tìm trung vị Me và mốt của bảng số liệu trên.
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Vì cỡ mẫu n = 26 = 2.13 là số chẵn nên trung vị Me của mẫu số liệu là trung bình cộng của số liệu thứ 13 và số liệu thứ 14.
Do đó trung vị Me = (251 + 259) : 2 = 255.
Quan sát bảng dữ liệu, ta thấy tất cả các giá trị đều chỉ xuất hiện 1 lần.
Do đó mẫu dữ liệu trên không có mốt.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
Các số đặc trưng đo mức độ phân tán của mẫu số liệu là khoảng tứ phân vị, khoảng biến thiên, phương sai và độ lệch chuẩn.
Vì vậy ta loại được các đáp án B, C, D.
Các số đặc trưng đo xu thế trung tâm của mẫu số liệu là trung vị, số trung bình (trung bình cộng), tứ phân vị, mốt.
Do đó ta chọn đáp án A.
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
- Vì cỡ mẫu n = 60 = 2.30 là số chẵn. Do đó giá trị tứ phân vị thứ hai bằng trung bình cộng của số liệu thứ 30 và số liệu thứ 31.
Khi sắp xếp mẫu số liệu theo thứ tự không giảm, ta được số liệu thứ 30 và số liệu thứ 31 cùng bằng 35.
Do đó Q2 = 35.
- Ta tìm tứ phân vị thứ nhất là trung vị của nửa mẫu số liệu bên trái Q2 (kể cả Q2).
Ta có cỡ mẫu lúc này n = 30 = 2.15 là số chẵn.
Nên giá trị tứ phân vị thứ nhất là trung bình cộng của số liệu thứ 15 và số liệu thứ 16.
Khi sắp xếp mẫu số liệu theo thứ tự không giảm, ta được số liệu thứ 15 và số liệu thứ 16 cùng bằng 25.
Do đó Q1 = 25.
- Ta tìm tứ phân vị thứ ba là trung vị của nửa mẫu số liệu bên phải Q2 (kể cả Q2).
Ta có cỡ mẫu lúc này n = 30 = 2.15 là số chẵn.
Nên giá trị tứ phân vị thứ ba là trung bình cộng của số liệu thứ 15 và số liệu thứ 16 (tính từ số liệu thứ 31 trở đi). Tức là giá trị tứ phân vị thứ ba là trung bình cộng của số liệu thứ 45 và số liệu thứ 46.
Khi sắp xếp mẫu số liệu theo thứ tự không giảm, ta được số liệu thứ 45 và số liệu thứ 46 cùng bằng 35.
Do đó Q3 = 35.
Ta có khoảng tứ phân vị ∆Q = Q3 – Q1 = 35 – 25 = 10.
Vậy ta chọn đáp án C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.