Câu hỏi:

19/07/2022 1,943

Cho hàm số bậc bốn y = f(x). Biết rằng hàm số g(x) = ln f(x) có bảng biến thiên

Media VietJack

Diện tích hình phẳng giới hạn bởi các đường y = f '(x) và y = g'(x) thuộc khoảng nào dưới đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Từ bảng biến thiên hàm số g(x) = ln f(x) ta có ln f(x) ≥ ln 3, x Î  f(x) ≥ 3, x Î ℝ.

Ta có g'(x) =f'(x)f(x)

Từ bảng biến thiên ta có đồ thị hàm số y = g(x) có 3 điểm cực trị là A(x1; ln30), B(x2; ln 35), C(x3; ln 3) nên f '(x1) = f '(x2) = f '(x3) = 0 và f(x1) = 30, f(x2) = 35, f(x3) = 3.

Do y = f '(x) là hàm số bậc 3 nên phương trình f '(x) = 0 chỉ có tối đa 3 nghiệm x1, x2, x3

Xét phương trình hoành độ giao điểm của f '(x) và g '(x) ta có

f '(x) = g '(x)  f '(x) =f'(x)f(x)

.f'(x)=0f(x)=1(VN)x=x1x=x2x=x3

Diện tích hình phẳng giới hạn bởi các đường y = f '(x) và y = g'(x) là:

S =x1x3g'(x)f'(x)dx=x1x3f'(x)f(x)f'(x)dx=x1x3f'(x).1f(x)1dx

=x1x2f'(x).1f(x)1dx+x2x3f'(x).1f(x)1dx

+ Tính I1 =x1x2f'(x).1f(x)1dx =x1x2f'(x).11f(x)dx (do f '(x) ≥ 0, x Î(x1, x2))

Đặt t = f(x) dt = f '(x) dx

Đổi cận:

x = x1 Þ t = f(x­1) = 30

x = x2 Þ t = f(x2) = 35

Suy ra I1 = = 35 − ln 35 − 30 + ln30 = 5 + ln .

+ Tính I2 = = (do f '(x) ≥ 0, x Î(x2, x3)).

Đặt t = f(x) dt = f '(x)dx .

Đổi cận

x = x2 Þ t = f(x2) = 35

x = x3 Þ t = f(x3) = 3

Suy ra I2 =303511tdt=tlnt3035

= −(3 − ln 3 − 35 + ln 35) = 32 − ln67 .

Vậy S = 5 + ln +  = 37 +ln ≈ 34,39 Î (33; 35).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Dựa vào đồ thị ta thấy:

TH1. Phương trình f(x) = m có đúng hai nghiệm thực phân biệt khi m = −2:

Media VietJack

TH2. Phương trình f(x) = m có đúng hai nghiệm thực phân biệt khi m > −1:

Media VietJack

Vậy m Î{−2; 0; 1; 2; 3; 4; 5}. Vậy có 7 giá trị m thỏa mãn.

Lời giải

Đáp án đúng là: A

Gọi H là trung điểm của AC '

Vì ABCD.A'B'C'D'là hình lập phương nên BH (ACC'A')

ÞB,ACC'A'  = BH =12 AC

Mà ABCD là hình vuông cạnh 3 nên AC =

ÞB,ACC'A'  =322

Câu 3

Trong không gian Oxyz, cho điểm A(1; 2; 3). Phương trình của mặt cầu tâm A và tiếp xúc với mặt phẳng x − 2y + 2x + 3 = 0 là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Trong không gian Oxyz. Cho hai vectơ u  = (1; −4; 0) và v  = (−1; −2; 1). Vectơ u  + 3v có tọa độ là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay