Câu hỏi:

19/07/2022 14,840

Có bao nhiêu số nguyên dương a sao cho mỗi a có đúng hai số nguyên b thoả mãn (3b – 3)(a.2b – 16) < 0

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

* Cách 1:

- TH1: a = 1 Þ (3b – 3)(2b – 16) < 0.

Nếu b ≤ 1 hoặc b ≥ 4 không thoả mãn bất phương trình và b {2; 3} thoả mãn.

Vậy a = 1 thoả mãn.

- TH2: a = 2 Þ (3b – 3)(2.2b – 16) < 0

Û (3b – 3)(2b + 1 – 16) < 0

Nếu b ≤ 1 hoặc b ≥ 3 không thoả mãn bất phương trình và b = 2 thoả mãn.

Vậy a = 2 không thoả mãn.

- TH3: a = 3 Þ (3b – 3)(3.2b – 16) < 0.

Nếu b ≤ 1 hoặc b ≥ 3 không thoả mãn bất phương trình và b = 2 thoả mãn.

Vậy a = 3 không thoả mãn.

- TH4: a > 3.

Ta cần tìm a để bất phương trình (3b – 3)(a.2b – 16) < 0 có 2 nghiệm b.

• Nếu b ≥ 3 Þ (3b – 3)(a.2b – 16) ≥ 24.(3.8 – 16) > 0 không thoả mãn bất phương trình.

• Nếu b = 2 Þ (3b – 3)(a.2b – 16) ≥ 6(4.4 – 16) ≥ 0 không thoả mãn bất phương trình.

• Nếu b = 1 không thoả mãn.

• Nếu b < 1 Þ (3b – 3) < 0.

Bất phương trình tương đương a.2b – 16 > 0.

Hay a > 162b có hai nghiệm b suy ra 33 ≤ a ≤ 64.

Kết hợp lại suy ra có tất cả 33 số nguyên dương a thoả mãn.

* Cách 2:

Xét (3b – 3)(a.2b – 16) = 0.

Do a Î* nên b=1b=log216a.

• TH1: log216a > 1 Û a < 8.

Bất phương trình có đúng 2 nghiệm nguyên b

Û 3 < log216a ≤ 4 Û 1 ≤ a < 2 Þ a = 1 (thoả mãn).

• TH2: log216a < 1 Û a > 8.

Bất phương trình có đúng 2 nghiệm nguyên b

Û −2 ≤ log216a< −14 Û 32 < a ≤ 64 Þ có 32 giá trị a.

Vậy có 33 giá trị của a thoả mãn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số f(x) = (a + 3)x4 – 2ax2 + 1 với a là tham số thực. Nếu max[0;3]f(x)= f(2) thì min[0;3]f(x) bằng

Xem đáp án » 19/07/2022 19,484

Câu 2:

Nghiệm của phương trình log12(2x1)= 0 là

Xem đáp án » 19/07/2022 18,584

Câu 3:

Trong không gian Oxyz, cho điểm M(2; −2; 1) và mặt phẳng (P): 2x – 3y – z + 1 = 0. Đường thẳng đi qua M và vuông góc với mặt phẳng (P) có phương trình là

Xem đáp án » 19/07/2022 14,510

Câu 4:

Với a là số thực dương tuỳ ý, log(100a) bằng

Xem đáp án » 19/07/2022 13,470

Câu 5:

Hàm số F(x) = cot x là một nguyên hàm của hàm số nào dưới đây trên khoảng 0;π2?

Xem đáp án » 19/07/2022 12,733

Câu 6:

Cho hàm số f(x) = 1 + e2x. Khẳng định nào dưới đây là đúng?

Xem đáp án » 19/07/2022 9,904

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn