Câu hỏi:
19/07/2022 16,090Có bao nhiêu số nguyên dương a sao cho mỗi a có đúng hai số nguyên b thoả mãn (3b – 3)(a.2b – 16) < 0
Câu hỏi trong đề: Giải Đề thi THPT Quốc gia môn Toán năm 2022 (4 mã đề gốc) !!
Bắt đầu thiQuảng cáo
Trả lời:
Đáp án đúng là: D
* Cách 1:
- TH1: a = 1 Þ (3b – 3)(2b – 16) < 0.
Nếu b ≤ 1 hoặc b ≥ 4 không thoả mãn bất phương trình và b ∈ {2; 3} thoả mãn.
Vậy a = 1 thoả mãn.
- TH2: a = 2 Þ (3b – 3)(2.2b – 16) < 0
Û (3b – 3)(2b + 1 – 16) < 0
Nếu b ≤ 1 hoặc b ≥ 3 không thoả mãn bất phương trình và b = 2 thoả mãn.
Vậy a = 2 không thoả mãn.
- TH3: a = 3 Þ (3b – 3)(3.2b – 16) < 0.
Nếu b ≤ 1 hoặc b ≥ 3 không thoả mãn bất phương trình và b = 2 thoả mãn.
Vậy a = 3 không thoả mãn.
- TH4: a > 3.
Ta cần tìm a để bất phương trình (3b – 3)(a.2b – 16) < 0 có 2 nghiệm b.
• Nếu b ≥ 3 Þ (3b – 3)(a.2b – 16) ≥ 24.(3.8 – 16) > 0 không thoả mãn bất phương trình.
• Nếu b = 2 Þ (3b – 3)(a.2b – 16) ≥ 6(4.4 – 16) ≥ 0 không thoả mãn bất phương trình.
• Nếu b = 1 không thoả mãn.
• Nếu b < 1 Þ (3b – 3) < 0.
Bất phương trình tương đương a.2b – 16 > 0.
Hay a > có hai nghiệm b suy ra 33 ≤ a ≤ 64.
Kết hợp lại suy ra có tất cả 33 số nguyên dương a thoả mãn.
* Cách 2:
Xét (3b – 3)(a.2b – 16) = 0.
Do a Î ℕ* nên .
• TH1: > 1 Û a < 8.
Bất phương trình có đúng 2 nghiệm nguyên b
Û 3 < ≤ 4 Û 1 ≤ a < 2 Þ a = 1 (thoả mãn).
• TH2: < 1 Û a > 8.
Bất phương trình có đúng 2 nghiệm nguyên b
Û −2 ≤ < −14 Û 32 < a ≤ 64 Þ có 32 giá trị a.
Vậy có 33 giá trị của a thoả mãn.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Hàm số F(x) = cot x là một nguyên hàm của hàm số nào dưới đây trên khoảng ?
Câu 4:
Cho hàm số f(x) = (a + 3)x4 – 2ax2 + 1 với a là tham số thực. Nếu = f(2) thì bằng
Câu 5:
Trong không gian Oxyz, cho điểm M(2; −2; 1) và mặt phẳng (P): 2x – 3y – z + 1 = 0. Đường thẳng đi qua M và vuông góc với mặt phẳng (P) có phương trình là
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
45 bài tập Xác suất có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
CÂU TRẮC NGHIỆM ĐÚNG SAI
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận