Câu hỏi:
08/08/2022 5,149Quảng cáo
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: C.
Vì 90° < α < 180° nên cosα < 0.
Do đó \[cos\alpha = - \sqrt {1 - {{\sin }^2}\alpha } = - \sqrt {1 - {{\left( {\frac{{12}}{{13}}} \right)}^2}} = - \sqrt {\frac{{25}}{{169}}} = - \frac{5}{{13}}\].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải:
Đáp án đúng là: A.
Ta có \({\tan ^2}\alpha + 1 = \frac{1}{{{{\cos }^2}\alpha }}\)
\( \Rightarrow {\cos ^2}\alpha = \frac{1}{{{{\tan }^2}\alpha + 1}} = \frac{1}{{{{\left( { - 2\sqrt 2 } \right)}^2} + 1}} = \frac{1}{9}\)\( \Rightarrow \cos \alpha = \pm \frac{1}{3}\).
Vì 0° < α < 180° ⇒ sinα > 0 mà \(\tan \alpha = - 2\sqrt 2 \)< 0 nên cosα < 0.
Do đó \(\cos \alpha = - \frac{1}{3}\).
Lời giải
Hướng dẫn giải:
Đáp án đúng là: C.
Vì 0° < α < 180° nên sinα > 0.
Lại có sin2α + cos2α = 1
Suy ra \(\sin \alpha = \sqrt {1 - {{\cos }^2}\alpha } = \sqrt {1 - {{\left( {\frac{1}{3}} \right)}^2}} = \frac{{2\sqrt 2 }}{3}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.