Cho mệnh đề sau: “… x ∈ ℝ, 4x2 – 1 = 0”.
Chỗ trống trong mệnh đề trên có thể điền kí hiệu nào dưới đây để mệnh đề đúng?
Cho mệnh đề sau: “… x ∈ ℝ, 4x2 – 1 = 0”.
Chỗ trống trong mệnh đề trên có thể điền kí hiệu nào dưới đây để mệnh đề đúng?
A. ∀;
B. ∃;
C. Cả hai kí hiệu ∀ và ∃ đều được;
D. Không có kí hiệu nào thỏa mãn.
Quảng cáo
Trả lời:

Đáp án đúng là: B.
Ta có:
4x2 – 1 = 0 (*) ⇔ x2 = ⇔ x = hoặc x = .
Ta thấy phương trình (*) có hai nghiệm phân biệt, hay nói cách khác phương trình (*) tồn tại hai giá trị của x là x = và x = thỏa mãn.
Vì vậy ta dùng kí hiệu ∃ cho mệnh đề trên.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. Tồn tại số thực x mà nếu số đó bé hơn 3 thì bình phương của nó bé hơn 9;
B. Với mọi số thực x mà nếu số đó bé hơn 3 thì bình phương của nó bé hơn 9;
C. Không có số thực x nào mà nếu số đó bé hơn 3 thì bình phương của nó bé hơn 9;
D. Có duy nhất một số thực x mà nếu số đó bé hơn 3 thì bình phương của nó bé hơn 9.
Lời giải
Đáp án đúng là: B.
Ta có mệnh đề “∀x ∈ ℝ, x < 3 ⇒ x2 < 9” được phát biểu như sau:
“Với mọi số thực x mà nếu số đó bé hơn 3 thì bình phương của nó bé hơn 9”.
Đối chiếu với các đáp án, ta thấy phương án B là hợp lý nhất.
Câu 2
A. ∀x ∈ ℕ, x ≤ 2x;
B. ∀x ∈ ℝ, ≥ 0;
C. ∃x ∈ ℕ, x2 = x;
D. ∀x ∈ ℝ, x > 0.
Lời giải
Đáp án đúng là: D.
A. Mệnh đề “∀x ∈ ℕ, x ≤ 2x” được phát biểu như sau:
“Với mọi số tự nhiên x, ta luôn có bất phương trình x ≤ 2x”.
Ta thấy mệnh đề này đúng vì mọi số tự nhiên x luôn thỏa mãn x ≤ 2x.
B. Mệnh đề “∀x ∈ ℝ, ≥ 0” được phát biểu như sau:
“Với mọi số thực x thì căn bậc hai số học của số đó luôn lớn hơn hoặc bằng 0”.
Mệnh đề này đúng vì căn bậc hai số học của một số luôn lớn hơn hoặc bằng 0.
C. Mệnh đề “∃x ∈ ℕ, x2 = x” được phát biểu như sau:
“Tồn tại ít nhất một số tự nhiên x để bình phương của một số bằng chính số đó”.
Ta có:
x2 = x ⇔ x2 – x = 0 ⇔ x = 0 hoặc x = 1.
Ta thấy phương trình x2 = x có hai nghiệm phân biệt, hay nói cách khác phương trình x2 = x tồn tại hai giá trị của x là x = 0 và x = 1 thỏa mãn, chính là tồn tại số tự nhiên để bình phương của nó bằng chính nó.
Do đó mệnh đề ở câu C đúng.
D. Mệnh đề “∀x ∈ ℝ, x > 0” được phát biểu như sau:
“Mọi số thực x luôn luôn lớn hơn 0”.
Mệnh đề này sai vì số thực x có thể âm hoặc bằng 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. Mọi số chẵn đều không chia hết cho 2;
B. Có ít nhất một số chẵn chia hết cho 2;
C. Mọi số chẵn đều không chia hết cho 2;
D. Có ít nhất một số chẵn không chia hết cho 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. ∃x ∈ ℤ, x2 – 4 = 0;
B. ∀x ∈ ℤ, x2 + 1 chia hết cho 3;
C. ∀x ∈ ℤ, x2 > x;
D. ∃x ∈ ℤ, x2 + 1 = 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. Với mọi số nguyên x, ta có x2 + 1 luôn lớn hơn 0;
B. Tồn tại duy nhất một số nguyên x để x2 + 1 luôn lớn hơn 0;
C. Tồn tại ít nhất một số nguyên x để x2 + 1 luôn lớn hơn 0;
D. Không có số nguyên nào thỏa mãn bất đẳng thức x2 + 1 > 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.