Câu hỏi:

08/08/2022 746 Lưu

Cho các mệnh đề sau:

(1) x , |x| > 1 x > 1.

(2) x , 2x2 8 = 0.

(3) x , 2x + 1 là số nguyên tố.

Trong các mệnh đề trên, có bao nhiêu mệnh đề đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B.

(1) Thay x = – 1 vào mệnh đề (1) ta có:

|1| > 1 1 > 1 (vô lý).

Do đó mệnh đề (1) sai.

(2) Ta có:

2x2 8 = 0 (*) 2x2 8 x2 = 4 x = 2 hoặc x = 2.

Ta thấy phương trình (*) có hai nghiệm phân biệt, hay nói cách khác phương trình (*) tồn tại hai giá trị nguyên của x là x = 2 và x = 2 thỏa mãn.

Do đó mệnh đề (2) đúng.

(3) Thay x = 3 vào mệnh đề (3) ta có:

23 + 1 = 8 + 1 = 9.

Ta thấy 9 không phải là số nguyên tố vì số nguyên tố là số chỉ chia hết cho 1 và chính nó nên mệnh đề (3) sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: B.

Ta có mệnh đề x ℝ, x < 3 x2 < 9 được phát biểu như sau: 

Với mọi số thực x mà nếu số đó bé hơn 3 thì bình phương của nó bé hơn 9.

Đối chiếu với các đáp án, ta thấy phương án B là hợp lý nhất.

Câu 2

Lời giải

Đáp án đúng là: D.

A. Mệnh đề “x ℕ, x ≤ 2x” được phát biểu như sau:

“Với mọi số tự nhiên x, ta luôn có bất phương trình x ≤ 2x”.

Ta thấy mệnh đề này đúng vì mọi số tự nhiên x luôn thỏa mãn x ≤ 2x.

B. Mệnh đề “x ℝ, x ≥ 0” được phát biểu như sau:

“Với mọi số thực x thì căn bậc hai số học của số đó luôn lớn hơn hoặc bằng 0”.

Mệnh đề này đúng vì căn bậc hai số học của một số luôn lớn hơn hoặc bằng 0.

C. Mệnh đề “x ℕ, x2 = x” được phát biểu như sau:

“Tồn tại ít nhất một số tự nhiên x để bình phương của một số bằng chính số đó”.

Ta có:

x2 = x x2 – x = 0 x = 0 hoặc x = 1.

Ta thấy phương trình x2 = x có hai nghiệm phân biệt, hay nói cách khác phương trình x2 = x tồn tại hai giá trị của x là x = 0 và x = 1 thỏa mãn, chính là tồn tại số tự nhiên để bình phương của nó bằng chính nó.

Do đó mệnh đề ở câu C đúng.

D. Mệnh đề “x ℝ, x > 0” được phát biểu như sau:

“Mọi số thực x luôn luôn lớn hơn 0”.

Mệnh đề này sai vì số thực x có thể âm hoặc bằng 0.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP