10 Bài tập Số phần tử của tập hợp. Tập hợp rỗng (có lời giải)
66 người thi tuần này 4.6 598 lượt thi 10 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Học sinh cũng đã học
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 10 có đáp án (Đề 2)
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 10 có đáp án (Đề 1)
Bài tập ôn tập Toán 10 Chân trời sáng tạo Chương 10 có đáp án
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 9 có đáp án (Đề 2)
Đề kiểm tra Toán 10 Chân trời sáng tạo Chương 9 có đáp án (Đề 1)
Bài tập ôn tập Toán 10 Chân trời sáng tạo Chương 9 có đáp án
Bộ 10 đề thi cuối kì 2 Toán 10 Chân trời sáng tạo có đáp án - Đề 06
Bộ 10 đề thi cuối kì 2 Toán 10 Chân trời sáng tạo có đáp án - Đề 05
Danh sách câu hỏi:
Câu 1
A. 5;
B. 6;
C. 3;
D. 4.
Lời giải
Đáp án đúng là: B.
Ta có:
+ Các ước là số tự nhiên của 20 là: 1; 2; 4; 5; 10; 20.
+ Các ước là số tự nhiên của 40 là: 1; 2; 4; 5; 8; 10; 20; 40.
Do đó các ước chung là số tự nhiên của 20 và 40 là 1; 2; 4; 5; 10; 20.
⇒ E = {1; 2; 4; 5; 10; 20}.
Vì vậy tập hợp E gồm có 6 phần tử.
Vậy n(E) = 6.
Câu 2
A. 1;
B. 2;
C. 3;
D. 4.
Lời giải
Đáp án đúng là: A.
Ta có:
(x2 – 3)(4x2 – 10x + 6) = 0
⇔ .
Vì x ∈ ℤ nên ta chỉ nhận một giá trị là x = 1.
Do đó tập hợp X có 1 phần tử.
Vậy n(X) = 1.
Câu 3
A. A = {x ∈ ℤ | x2 – 9 = 0};
B. B = {x ∈ ℝ | x2 – 6 = 0};
C. C = {x ∈ ℝ | x2 + 1 = 0};
D. D = {x ∈ ℝ | x2 – 4x + 3 = 0}.
Lời giải
Đáp án đúng là: C.
A. Ta có:
x2 – 9 = 0 ⇔ x2 = 9 ⇔ .
Vì x ∈ ℤ nên hai nghiệm trên đều thỏa mãn.
Vậy A = {– 3; 3}.
B. Ta có:
x2 – 6 = 0 ⇔ x2 = 6 ⇔ .
Vì x ∈ ℝ nên hai nghiệm trên đều thỏa mãn.
Vậy B = { ; }.
C. Ta có:
Phương trình x2 + 1 = 0 vô nghiệm do x2 + 1 > 0 với mọi x ∈ ℝ.
Do đó, tập hợp C không có phần tử nào thỏa mãn.
Vậy C = ∅.
D. Ta có:
x2 – 4x + 3 = 0 ⇔ .
Vì x ∈ ℝ nên hai nghiệm trên đều thỏa mãn.
Vậy D = {1; 3}.
Vậy C là tập hợp rỗng.
Câu 4
A. A = {x ∈ ℝ | x2 + x + 3 = 0};
B. B = {x ∈ ℕ* | x2 + 6x + 5 = 0};
C. C = {x ∈ ℕ* | x(x2 – 5) = 0};
D. D = {x ∈ ℝ | x2 – 9x + 20 = 0}.
Lời giải
Đáp án đúng là: D.
A. Ta có:
Do x2 + x + 3 = x2 + 2 . x + + = .
Phương trình x2 + x + 3 = 0 vô nghiệm.
Do đó, tập hợp A không có phần tử nào thỏa mãn.
Vậy A = ∅.
B. Ta có:
x2 + 6x + 5 = 0 ⇔ .
Vì x ∈ ℕ* nên không có phần tử nào thỏa mãn tập hợp trên.
Vậy B = ∅.
C. Ta có:
x(x2 – 5) = 0 ⇔ .
Vì x ∈ ℕ* nên không có phần tử nào thỏa mãn tập hợp trên.
Vậy C = ∅.
D. Ta có:
x2 – 9x + 20 = 0 ⟺ .
Vì x ∈ ℝ nên hai nghiệm x = 4 và x = 5 đều thỏa mãn.
Do đó tập hợp D có hai phần tử.
Vậy D = {4; 5}.
Vậy chỉ có tập hợp D không phải là tập hợp rỗng.
Lời giải
Đáp án đúng là: B.
- Xét tập hợp A ta có:
2 < x – 1 < 4
⇔ 2 + 1 < x < 4 + 1
⇔ 3 < x < 5.
Vì x ∈ ℤ nên x = 4.
Vậy A = {4}.
- Xét tập hợp B ta có:
3 < 2x – 3 < 5
⇔ 3 + 3 < 2x < 5 + 3
⇔ 6 < 2x < 8
⇔ 3 < x < 4.
Vì x ∈ ℕ nên không có giá trị nào của x thỏa mãn.
Vậy B = ∅.
- Xét tập hợp C ta có:
Các số tự nhiên x bé hơn 5 là 0; 1; 2; 3; 4.
Vậy C = {0; 1; 2; 3; 4}.
Vậy trong 3 tập hợp trên có 1 tập rỗng.
Câu 6
A. a = – 4;
B. a = – 5;
C. a = – 6;
D. a = – 7.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. m = 7;
B. m = 5;
C. m = 9;
D. m = 8.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A. n(C) = 2;
B. n(C) = 3;
C. n(C) = 4;
D. n(C) = 5;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A. n(D) = 5;
B. n(D) = 6;
C. n(D) = 7;
D. n(D) = 8.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.