15 câu Trắc nghiệm Toán 10 Kết nối tri thức Khái niệm vectơ có đáp án
48 người thi tuần này 5.0 2 K lượt thi 15 câu hỏi 30 phút
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
100 câu trắc nghiệm Mệnh đề - Tập hợp nâng cao (P1)
100 câu trắc nghiệm Cung và góc lượng giác nâng cao (P1)
60 câu Trắc nghiệm Toán 10 Bài hệ thức lượng trong tam giác có đáp án (Mới nhất)
100 câu trắc nghiệm Cung và góc lượng giác cơ bản (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A. \(\overrightarrow a \) và \(\overrightarrow b \);
B. \(\overrightarrow a \) và \(\overrightarrow c \);
C. \(\overrightarrow c \) và \(\overrightarrow b \);
D. \(\overrightarrow c \) và \(\overrightarrow e \).
Lời giải
Đáp án đúng là A
Hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng nằm trên một đường thẳng hay chúng có giá trùng nhau nên \(\overrightarrow a \) và \(\overrightarrow b \) là hai vectơ cùng phương. Do đó hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) cùng hướng.
Hai vectơ \(\overrightarrow a \) và \(\overrightarrow c \) nằm trên hai đường thẳng song song hay chúng có giá song song nhau nên \(\overrightarrow a \) và \(\overrightarrow c \) là hai vectơ cùng phương. Do đó hai vectơ \(\overrightarrow a \) và \(\overrightarrow c \) ngược hướng.
Hai vectơ \(\overrightarrow b \) và \(\overrightarrow c \) nằm trên hai đường thẳng song song hay chúng có giá song song nhau nên \(\overrightarrow b \) và \(\overrightarrow c \) là hai vectơ cùng phương. Do đó hai vectơ \(\overrightarrow b \) và \(\overrightarrow c \) ngược hướng.
Hai vectơ \(\overrightarrow e \) và \(\overrightarrow c \) không cùng phương.
Vậy các cặp vec tơ cùng hướng là \(\overrightarrow a \) và \(\overrightarrow b \).
Câu 2
A. 10 cm;
B. 3 cm;
C. 4 cm;
D. 5cm.
Lời giải
Đáp án đúng là D

Gọi O là giao điểm của hai đường chéo AC và BD. Khi đó O là trung điểm của AC, cũng là trung điểm của BD.
⇒ AO = OC = \(\frac{{AC}}{2} = \frac{8}{2} = 4cm.\)
⇒ BO = OD = \(\frac{{BD}}{2} = \frac{6}{2} = 3cm.\)
Xét tam giác AOB vuông tại O, có:
AB2 = AO2 + BO2 (định lí Py – ta – go)
⇔ AB2 = 42 + 32 = 16 + 9 = 25
⇔ AB = 5 (cm)
\( \Rightarrow \left| {\overrightarrow {AB} } \right| = AB = 5cm.\)
Vậy độ dài \(\overrightarrow {AB} \) là 5cm.
Câu 3
A. \(\overrightarrow {DC} \);
B. \(\overrightarrow {AD} \);
C. \(\overrightarrow {CB} \);
D. \(\overrightarrow {BA} \).
Lời giải
Đáp án đúng là D
Vì ABCD là hình bình hành nên AB // CD nên \(\overrightarrow {BA} \) và \(\overrightarrow {CD} \) cùng phương. Do đó \(\overrightarrow {BA} \) và \(\overrightarrow {CD} \) cùng hướng.
Mặt khác AB = CD (tính chất hình bình hành)
Suy ra \(\overrightarrow {BA} = \overrightarrow {CD} \).
Câu 4
A. \(\overrightarrow {MN} = \overrightarrow {PC} \);
B. \(\overrightarrow {AA} \) cùng hướng với \(\overrightarrow {PP} \);
C. \(\overrightarrow {MB} = \overrightarrow {AM} \);
D. \(\overrightarrow {MN} = \overrightarrow {PB} \).
Lời giải
Đáp án đúng là D
+) Xét tam giác ABC, có:
M là trung điểm AB
N là trung điểm của AC
⇒ MN là đường trung bình của tam giác ABC
⇒ MN // BC và MN = \(\frac{1}{2}\)BC
Mà BP = PC = \(\frac{1}{2}\)BC (P là trung điểm của BC)
⇒ MN = CP = PB (1)
Vì MN // BC nên MN // CP. Khi đó \(\overrightarrow {MN} \) và \(\overrightarrow {PC} \) cùng phương. Suy ra \(\overrightarrow {MN} \) và \(\overrightarrow {PC} \) cùng hướng (2)
Từ (1) và (2) suy ra \(\overrightarrow {MN} \) = \(\overrightarrow {CP} \). Do đó đáp án A đúng.
Tương tự MN //BC hay MN // PB. Khi đó \(\overrightarrow {MN} \) và \(\overrightarrow {PB} \) cùng phương nhưng ngược hướng (3)
Từ (1) và (3) suy ra \(\overrightarrow {MN} \) không bằng \(\overrightarrow {PB} \). Do đó đáp án D sai.
+) Ta có \(\overrightarrow {AA} \) và \(\overrightarrow {PP} \) là các vectơ – không.
Mà mọi vectơ – không có cùng độ dài và cùng hướng nên bằng nhau
Suy ra \(\overrightarrow {AA} \) cùng hướng với \(\overrightarrow {PP} \). Do đó đáp án B đúng.
+) Hai vec tơ \(\overrightarrow {AM} \) và \(\overrightarrow {MB} \) cùng hướng
Vì M là trung điểm của AB nên AM = MB
Suy ra \(\overrightarrow {AM} = \overrightarrow {MB} \). Do đó đáp án C đúng.
Câu 5
A. \(\left| {\overrightarrow {AM} } \right| = \sqrt {53} \)cm
B. \(\left| {\overrightarrow {AM} } \right| = 3\) cm
C. \(\left| {\overrightarrow {AM} } \right| = \frac{{\sqrt {53} }}{2}\) cm
D. \(\left| {\overrightarrow {AM} } \right| = \frac{3}{2}\) cm
Lời giải
Đáp án đúng là C

Xét tam giác ABC vuông tại A, có:
BC2 = AB2 + AC2 (định lí Py – ta – go)
⇔ BC2 = 22 + 72 = 4 + 49 = 53
⇔ BC = \(\sqrt {53} \) cm
Ta lại có M là trung điểm BC
⇒ AM = \(\frac{1}{2}\) BC (tính chất đường trung tuyến)
⇒ AM = \(\frac{{\sqrt {53} }}{2}\) cm.
⇒ \(\left| {\overrightarrow {AB} } \right| = AB = \frac{{\sqrt {53} }}{2}cm\)
Vậy độ dài vectơ \(\overrightarrow {AB} \) là \(\frac{{\sqrt {53} }}{2}cm.\)
Câu 6
A. \(\overrightarrow {PQ} \);
B. \(\overrightarrow {QP} \);
C. PQ;
D. \(\overline {PQ} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. hai vectơ độ dài bằng nhau;
B. hai vectơ trùng nhau;
C. hai vectơ cùng phương và độ dài bằng nhau;
D. hai vectơ cùng hướng và độ dài bằng nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
A. \(\overrightarrow {AB} = \overrightarrow {DC} \);
B. \(\overrightarrow {OB} = \overrightarrow {DO} \);
C. \(\overrightarrow {OA} = \overrightarrow {OC} \);
D. \(\overrightarrow {CB} = \overrightarrow {DA} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A. 3;
B. \(3\sqrt 2 \);
C. 6;
D. \(6\sqrt 2 \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A. 3;
B. 4;
C. 5;
D. 6.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
A. có giá song song;
B. cùng phương;
C. có độ dài bằng nhau;
D. có giá trùng nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
A. Có duy nhất một vectơ cùng phương với mọi vec tơ;
B. Có vô số vectơ cùng phương với mọi vectơ;
C. Không có vectơ nào cùng phương với mọi vectơ;
D. Có ít nhất hai vectơ cùng phương với mọi vectơ.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 14
A. \(\overrightarrow {AB} = \overrightarrow {BD} \);
B. Hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {BD} \) cùng phương;
C. Hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {BD} \) cùng hướng;
D. Hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {BD} \) cùng độ dài.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.