Câu hỏi:
07/07/2022 963Cho hình thoi ABCD có độ dài hai đường chéo AC, BD lần lượt là 8 cm và 6 cm. Tính độ dài vectơ \(\overrightarrow {AB} \).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án đúng là D
Gọi O là giao điểm của hai đường chéo AC và BD. Khi đó O là trung điểm của AC, cũng là trung điểm của BD.
⇒ AO = OC = \(\frac{{AC}}{2} = \frac{8}{2} = 4cm.\)
⇒ BO = OD = \(\frac{{BD}}{2} = \frac{6}{2} = 3cm.\)
Xét tam giác AOB vuông tại O, có:
AB2 = AO2 + BO2 (định lí Py – ta – go)
⇔ AB2 = 42 + 32 = 16 + 9 = 25
⇔ AB = 5 (cm)
\( \Rightarrow \left| {\overrightarrow {AB} } \right| = AB = 5cm.\)
Vậy độ dài \(\overrightarrow {AB} \) là 5cm.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có M là trung điểm của AB, N là trung điểm của AC và P là trung điểm của BC.
Phát biểu nào dưới đây là sai.
Câu 2:
Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD. Đẳng thức nào sau đây sai?
Câu 4:
Cho tam giác ABC có bao nhiêu vectơ (khác vectơ không) có điểm đầu và điểm cuối là đỉnh A, B, C?
Câu 5:
Cho hình vuông MNPQ có chu vi bằng 12. Độ dài vectơ \(\overrightarrow {MP} \) là:
Câu 6:
Trên mặt phẳng tọa độ Oxy, hãy vẽ các vec tơ \(\overrightarrow {OB} \), \(\overrightarrow {AC} ,\overrightarrow {AD} ,\overrightarrow {AE} \) với A(1; -2), B(3; 3), C(4; 1), D(-1; 1), E(-2; 2). Một vật thể khởi hành từ A và chuyển động thẳng đề với vận tốc biểu diễn bởi vec tơ \(\overrightarrow v = \overrightarrow {OB} \). Hỏi vật thể đó đi qua điểm nào trong các điểm sau?
về câu hỏi!