Câu hỏi:
07/07/2022 1,662Cho tam giác ABC có M là trung điểm của AB, N là trung điểm của AC và P là trung điểm của BC.
Phát biểu nào dưới đây là sai.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đáp án đúng là D
+) Xét tam giác ABC, có:
M là trung điểm AB
N là trung điểm của AC
⇒ MN là đường trung bình của tam giác ABC
⇒ MN // BC và MN = \(\frac{1}{2}\)BC
Mà BP = PC = \(\frac{1}{2}\)BC (P là trung điểm của BC)
⇒ MN = CP = PB (1)
Vì MN // BC nên MN // CP. Khi đó \(\overrightarrow {MN} \) và \(\overrightarrow {PC} \) cùng phương. Suy ra \(\overrightarrow {MN} \) và \(\overrightarrow {PC} \) cùng hướng (2)
Từ (1) và (2) suy ra \(\overrightarrow {MN} \) = \(\overrightarrow {CP} \). Do đó đáp án A đúng.
Tương tự MN //BC hay MN // PB. Khi đó \(\overrightarrow {MN} \) và \(\overrightarrow {PB} \) cùng phương nhưng ngược hướng (3)
Từ (1) và (3) suy ra \(\overrightarrow {MN} \) không bằng \(\overrightarrow {PB} \). Do đó đáp án D sai.
+) Ta có \(\overrightarrow {AA} \) và \(\overrightarrow {PP} \) là các vectơ – không.
Mà mọi vectơ – không có cùng độ dài và cùng hướng nên bằng nhau
Suy ra \(\overrightarrow {AA} \) cùng hướng với \(\overrightarrow {PP} \). Do đó đáp án B đúng.
+) Hai vec tơ \(\overrightarrow {AM} \) và \(\overrightarrow {MB} \) cùng hướng
Vì M là trung điểm của AB nên AM = MB
Suy ra \(\overrightarrow {AM} = \overrightarrow {MB} \). Do đó đáp án C đúng.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD. Đẳng thức nào sau đây sai?
Câu 3:
Cho hình thoi ABCD có độ dài hai đường chéo AC, BD lần lượt là 8 cm và 6 cm. Tính độ dài vectơ \(\overrightarrow {AB} \).
Câu 4:
Cho tam giác ABC có bao nhiêu vectơ (khác vectơ không) có điểm đầu và điểm cuối là đỉnh A, B, C?
Câu 5:
Cho hình vuông MNPQ có chu vi bằng 12. Độ dài vectơ \(\overrightarrow {MP} \) là:
Câu 6:
Cho hình bình hành ABCD. Vectơ nào dưới đây bằng \(\overrightarrow {CD} \).
về câu hỏi!