15 câu Trắc nghiệm Toán 10 Kết nối tri thức Phương trình quy về phương trình bậc hai có đáp án
33 người thi tuần này 4.6 1.7 K lượt thi 15 câu hỏi 30 phút
🔥 Đề thi HOT:
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
60 câu Trắc nghiệm Toán 10 Bài hệ thức lượng trong tam giác có đáp án (Mới nhất)
55 câu Trắc nghiệm: Hệ thức lượng trong tam giác có đáp án
30 câu Trắc nghiệm Toán 10 Bài 2: Tập hợp có đáp án (Mới nhất)
9 câu Trắc nghiệm Bất phương trình bậc nhất hai ẩn 10 có đáp án
15 câu Trắc nghiệm Ôn tập Toán 10 Chương 3 Hình học có đáp án (Thông hiểu)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
A. P = 1;
B. P = – 1;
C. P = 0;
D. P = 2.
Lời giải
Đáp án đúng là C
Tập xác định D = ℝ, đặt t = x2 + x + 1 (t ≥ 0).
Phương trình đã cho trở thành \[\sqrt {t + 3} + \sqrt t = \sqrt {2t + 7} \] \[ \Leftrightarrow 2t + 3 + 2\sqrt {t\left( {t + 3} \right)} = 2t + 7\]
\[ \Leftrightarrow \sqrt {t\left( {t + 3} \right)} = 2\]
⇔ t(t + 3) = 4
⇔ t2 + 3t – 4 = 0
\[ \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = - 4\end{array} \right.\]
Kết hợp điều kiện thấy t = 1 thỏa mãn.
Với t = 1 ta có x2 + x + 1 = 1\[ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 1\end{array} \right.\].
Thay lần lượt các giá trị x = 0 và x = -1 vào phương trình đã cho ta thấy cả hai giá trị đều thỏa mãn.
Vậy tích các nghiệm của phương trình (-1).0 = 0.
Câu 2
A. x = – 4;
B. x = 2;
C. x = 1;
D. \[\left[ \begin{array}{l}x = - 4\\x = 2\end{array} \right.\].
Lời giải
Đáp án đúng là: B
Điều kiện của phương trình 5x2 – 6x – 4 ≥ 0 \[ \Leftrightarrow \left[ \begin{array}{l}x \le \frac{{3 - \sqrt {29} }}{5}\\x \ge \frac{{3 + \sqrt {29} }}{5}\end{array} \right.\]
\[\sqrt {5{x^2} - 6x - 4} = 2(x - 1)\] \[ \Leftrightarrow \left\{ \begin{array}{l}2\left( {x - 1} \right) \ge 0\\5{x^2} - 6x - 4 = 4{\left( {x - 1} \right)^2}\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\{x^2} + 2x - 8 = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\\left[ \begin{array}{l}x = 2\\x = - 4\end{array} \right.\end{array} \right. \Leftrightarrow x = 2\].
Vậy nghiệm của phương trình là x = 2.
Câu 3
A. \[\left[ \begin{array}{l}x = - 4\\x = 1\end{array} \right.\];
B. x = - 4;
C. \[\left[ \begin{array}{l}x = 4\\x = - 1\end{array} \right.\];
D. x = 1.
Lời giải
Đáp án đúng là: D
\[\sqrt {3x + 13} = x + 3\]
⇒ 3x + 13 = x2 + 6x + 9
⇒ x2 + 3x – 4 = 0
⇒ x = 1 hoặc x = -4.
Thay hai giá trị của x vào phương trình đã cho ta thấy x = 1 thỏa mãn.
Vậy phương trình đã cho nghiệm là x = 1.
Lời giải
Đáp án đúng là: B
Điều kiện của phương trình x2 + 5 ≥ 0 với \[\forall x \in \mathbb{R}\]
\[\sqrt {{x^2} + 5} = {x^2} - 1\] \[ \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 1 \ge 0\\{x^2} + 5 = {\left( {{x^2} - 1} \right)^2}\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x \ge 1\\x \le - 1\end{array} \right.\\{x^4} - 3{x^2} - 4 = 0\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x \ge 1\\x \le - 1\end{array} \right.\\\left[ \begin{array}{l}{x^2} = - 1\left( {VL} \right)\\{x^2} = 4\end{array} \right.\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x \ge 1\\x \le - 1\end{array} \right.\\\left[ \begin{array}{l}x = 2\\x = - 2\end{array} \right.\end{array} \right.\]\[ \Leftrightarrow \left[ \begin{array}{l}x = - 2\\x = 2\end{array} \right.\](thỏa mãn điều kiện).
Vậy phương trình có 2 nghiệm.
Câu 5
A. 0;
B. 1;
C. 2;
D. 3.
Lời giải
Đáp án đúng là: C
Điều kiện: \[\left\{ \begin{array}{l}3 - x + {x^2} \ge 0\\2 + x - {x^2} \ge 0\end{array} \right. \Leftrightarrow - 1 \le x \le 2\]
Ta có \[\sqrt {3 - x + {x^2}} - \sqrt {2 + x - {x^2}} = 1\]
\[ \Leftrightarrow \left\{ \begin{array}{l} - 1 \le x \le 2\\3 - x + {x^2} = 1 + 2 + x - {x^2} + 2\sqrt {2 + x - {x^2}} \end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l} - 1 \le x \le 2\\2 + x - {x^2} + \sqrt {2 + x - {x^2}} - 2 = 0(1)\end{array} \right.\] .
Đặt \[\sqrt {2 + x - {x^2}} = t(t \ge 0)\]
Từ (1) ta có phương trình t2 + t – 2 = 0 \[ \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = - 2\end{array} \right.\]
Kết hợp với điều kiện t = 1 thỏa mãn
Với t = 1 ta có \[\sqrt {2 + x - {x^2}} = 1\] \[ \Rightarrow {x^2} - x - 1 = 0\]\[ \Leftrightarrow x = \frac{{1 \pm \sqrt 5 }}{2}\]( thỏa mãn)
Vậy phương trình có 2 nghiệm.
Câu 6
A. x = 1;
B. x = – 1;
C. x = 4;
D. x = – 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. x = – 3;
B. x = – 2;
C. x = 2;
D. \(\left[ \begin{array}{l}x = 2\\x = - 3\end{array} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 9
A. \[\left[ \begin{array}{l}x = - 2\\x = 4\end{array} \right.\];
B. x = 2;
C. x = – 2;
D. x = 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 10
A. (0; 2);
B. (9; 10);
C. [7; 9];
D. (-1; 1].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 11
A. k = 0;
B. k = 1;
C. k = 2;
D. k = 3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 12
A. 0;
B. 1;
C. 2;
D. 3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 13
A. 0;
B. 1;
C. 2;
D. 3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 14
A. 1;
B. 2;
C. 3;
D. 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 15
A. – 5;
B. – 9;
C. – 14;
D. – 4;
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.