Câu hỏi:
08/07/2022 331Quảng cáo
Trả lời:
Đáp án đúng là: C
Điều kiện: \[\left\{ \begin{array}{l}3 - x + {x^2} \ge 0\\2 + x - {x^2} \ge 0\end{array} \right. \Leftrightarrow - 1 \le x \le 2\]
Ta có \[\sqrt {3 - x + {x^2}} - \sqrt {2 + x - {x^2}} = 1\]
\[ \Leftrightarrow \left\{ \begin{array}{l} - 1 \le x \le 2\\3 - x + {x^2} = 1 + 2 + x - {x^2} + 2\sqrt {2 + x - {x^2}} \end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l} - 1 \le x \le 2\\2 + x - {x^2} + \sqrt {2 + x - {x^2}} - 2 = 0(1)\end{array} \right.\] .
Đặt \[\sqrt {2 + x - {x^2}} = t(t \ge 0)\]
Từ (1) ta có phương trình t2 + t – 2 = 0 \[ \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = - 2\end{array} \right.\]
Kết hợp với điều kiện t = 1 thỏa mãn
Với t = 1 ta có \[\sqrt {2 + x - {x^2}} = 1\] \[ \Rightarrow {x^2} - x - 1 = 0\]\[ \Leftrightarrow x = \frac{{1 \pm \sqrt 5 }}{2}\]( thỏa mãn)
Vậy phương trình có 2 nghiệm.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Điều kiện của phương trình: 2x + 7 ≥ 0 \[ \Leftrightarrow x \ge - \frac{7}{2}\]
Vậy phương trình đã cho có nghiệm là x = 9 ∈ [7; 9].
Đáp án đúng là C.
Lời giải
Đáp án đúng là: B
Điều kiện của phương trình 5x2 – 6x – 4 ≥ 0 \[ \Leftrightarrow \left[ \begin{array}{l}x \le \frac{{3 - \sqrt {29} }}{5}\\x \ge \frac{{3 + \sqrt {29} }}{5}\end{array} \right.\]
\[\sqrt {5{x^2} - 6x - 4} = 2(x - 1)\] \[ \Leftrightarrow \left\{ \begin{array}{l}2\left( {x - 1} \right) \ge 0\\5{x^2} - 6x - 4 = 4{\left( {x - 1} \right)^2}\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\{x^2} + 2x - 8 = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\\left[ \begin{array}{l}x = 2\\x = - 4\end{array} \right.\end{array} \right. \Leftrightarrow x = 2\].
Vậy nghiệm của phương trình là x = 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.