Câu hỏi:
08/07/2022 224Số nghiệm của phương trình \[\sqrt {3 - x + {x^2}} - \sqrt {2 + x - {x^2}} = 1\] là:
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đáp án đúng là: C
Điều kiện: \[\left\{ \begin{array}{l}3 - x + {x^2} \ge 0\\2 + x - {x^2} \ge 0\end{array} \right. \Leftrightarrow - 1 \le x \le 2\]
Ta có \[\sqrt {3 - x + {x^2}} - \sqrt {2 + x - {x^2}} = 1\]
\[ \Leftrightarrow \left\{ \begin{array}{l} - 1 \le x \le 2\\3 - x + {x^2} = 1 + 2 + x - {x^2} + 2\sqrt {2 + x - {x^2}} \end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l} - 1 \le x \le 2\\2 + x - {x^2} + \sqrt {2 + x - {x^2}} - 2 = 0(1)\end{array} \right.\] .
Đặt \[\sqrt {2 + x - {x^2}} = t(t \ge 0)\]
Từ (1) ta có phương trình t2 + t – 2 = 0 \[ \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = - 2\end{array} \right.\]
Kết hợp với điều kiện t = 1 thỏa mãn
Với t = 1 ta có \[\sqrt {2 + x - {x^2}} = 1\] \[ \Rightarrow {x^2} - x - 1 = 0\]\[ \Leftrightarrow x = \frac{{1 \pm \sqrt 5 }}{2}\]( thỏa mãn)
Vậy phương trình có 2 nghiệm.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Nghiệm của phương trình \[\sqrt {2x + 7} = x - 4\] thuộc khoảng nào dưới đây:
Câu 2:
Nghiệm của phương trình \[\sqrt {5{x^2} - 6x - 4} = 2(x - 1)\] là:
Câu 3:
Số nghiệm của phương trình \[\sqrt {{x^2} + 5} = {x^2} - 1\] là:
Câu 4:
Nghiệm của phương trình \[\sqrt {2{x^2} - 6x - 4} = x - 2\] là:
Câu 6:
Tích các nghiệm của phương trình \[(x + 4)(x + 1) - 3\sqrt {{x^2} + 5x + 2} = 6\]là:
Câu 7:
Nghiệm của phương trình \[\sqrt {8 - {x^2}} = \sqrt {x + 2} \] là
về câu hỏi!