Câu hỏi:

08/07/2022 3,432

Số nghiệm của phương trình \[\sqrt {{x^2} + 5} = {x^2} - 1\] là:

Đáp án chính xác

Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).

Sổ tay Toán-lý-hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Điều kiện của phương trình x2 + 5 ≥ 0 với \[\forall x \in \mathbb{R}\]

\[\sqrt {{x^2} + 5} = {x^2} - 1\] \[ \Leftrightarrow \left\{ \begin{array}{l}{x^2} - 1 \ge 0\\{x^2} + 5 = {\left( {{x^2} - 1} \right)^2}\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x \ge 1\\x \le - 1\end{array} \right.\\{x^4} - 3{x^2} - 4 = 0\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x \ge 1\\x \le - 1\end{array} \right.\\\left[ \begin{array}{l}{x^2} = - 1\left( {VL} \right)\\{x^2} = 4\end{array} \right.\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x \ge 1\\x \le - 1\end{array} \right.\\\left[ \begin{array}{l}x = 2\\x = - 2\end{array} \right.\end{array} \right.\]\[ \Leftrightarrow \left[ \begin{array}{l}x = - 2\\x = 2\end{array} \right.\](thỏa mãn điều kiện).

Vậy phương trình có 2 nghiệm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Nghiệm của phương trình \[\sqrt {2x + 7} = x - 4\] thuộc khoảng nào dưới đây:

Xem đáp án » 08/07/2022 7,424

Câu 2:

Nghiệm của phương trình \[\sqrt {5{x^2} - 6x - 4} = 2(x - 1)\] là:

Xem đáp án » 08/07/2022 5,071

Câu 3:

Nghiệm của phương trình \[\sqrt {2{x^2} - 6x - 4} = x - 2\] là:

Xem đáp án » 08/07/2022 3,184

Câu 4:

Tích các nghiệm của phương trình \[(x + 4)(x + 1) - 3\sqrt {{x^2} + 5x + 2} = 6\]là:

Xem đáp án » 08/07/2022 2,355

Câu 5:

Nghiệm của phương trình \[\sqrt {3x + 13} = x + 3\] là:

Xem đáp án » 08/07/2022 1,852

Câu 6:

Nghiệm của phương trình \[\sqrt {8 - {x^2}} = \sqrt {x + 2} \]

Xem đáp án » 08/07/2022 1,478

Bình luận


Bình luận