Câu hỏi:
08/07/2022 288Phương trình: \[\sqrt {{x^2} + x + 4} + \sqrt {{x^2} + x + 1} = \sqrt {2{x^2} + 2x + 9} \] có tích các nghiệm là:
Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).
Quảng cáo
Trả lời:
Đáp án đúng là C
Tập xác định D = ℝ, đặt t = x2 + x + 1 (t ≥ 0).
Phương trình đã cho trở thành \[\sqrt {t + 3} + \sqrt t = \sqrt {2t + 7} \] \[ \Leftrightarrow 2t + 3 + 2\sqrt {t\left( {t + 3} \right)} = 2t + 7\]
\[ \Leftrightarrow \sqrt {t\left( {t + 3} \right)} = 2\]
⇔ t(t + 3) = 4
⇔ t2 + 3t – 4 = 0
\[ \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = - 4\end{array} \right.\]
Kết hợp điều kiện thấy t = 1 thỏa mãn.
Với t = 1 ta có x2 + x + 1 = 1\[ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 1\end{array} \right.\].
Thay lần lượt các giá trị x = 0 và x = -1 vào phương trình đã cho ta thấy cả hai giá trị đều thỏa mãn.
Vậy tích các nghiệm của phương trình (-1).0 = 0.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Nghiệm của phương trình \[\sqrt {2x + 7} = x - 4\] thuộc khoảng nào dưới đây:
Câu 2:
Nghiệm của phương trình \[\sqrt {5{x^2} - 6x - 4} = 2(x - 1)\] là:
Câu 3:
Số nghiệm của phương trình \[\sqrt {{x^2} + 5} = {x^2} - 1\] là:
Câu 4:
Nghiệm của phương trình \[\sqrt {2{x^2} - 6x - 4} = x - 2\] là:
Câu 5:
Tích các nghiệm của phương trình \[(x + 4)(x + 1) - 3\sqrt {{x^2} + 5x + 2} = 6\]là:
Câu 7:
Nghiệm của phương trình \[\sqrt {8 - {x^2}} = \sqrt {x + 2} \] là
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
Bài tập Xác định tính hợp lí của dữ liệu trong bảng thống kê (có lời giải)
185 câu Trắc nghiệm Toán 10 Bài 1:Phương trình đường thẳng trong mặt phẳng oxy có đáp án (Mới nhất)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
75 câu trắc nghiệm Vectơ nâng cao (P1)
15 câu Trắc nghiệm Toán 10 Kết nối tri thức Hàm số có đáp án
Đề thi Giữa kì 1 Toán 10 Kết nối tri thức có đáp án - Đề 1
về câu hỏi!