Câu hỏi:

08/08/2022 425

Cho tập hợp A = {x ℕ| 3 < 2x – 1 < m}.

Tìm giá trị của m để A là tập hợp rỗng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B.

Xét bất phương trình 3 < 2x – 1 < m (*).

A. Thay m = 7 vào bất phương trình (*) ta có:

3 < 2x – 1 < 7

3 + 1 < 2x < 7 + 1

4 < 2x < 8

2 < x < 4.

Vì x ℕ nên ta nhận giá trị x = 3.

Vậy m = 7 thì A = {3}.

B. Thay m = 5 vào bất phương trình (*) ta có:

3 < 2x – 1 < 5

3 + 1 < 2x < 5 + 1

4 < 2x < 6

2 < x < 3.

Vì x ℕ nên không có giá trị của x nào thỏa mãn.

Vậy m = 5 thì A = .

C. Thay m = 9 vào bất phương trình (*) ta có:

3 < 2x – 1 < 9

3 + 1 < 2x < 9 + 1

4 < 2x < 10

2 < x < 5.

Vì x ℕ nên ta nhận giá trị x = 3 và x = 4.

Vậy m = 9 thì A = {3; 4}.

D. Thay m = 8 vào bất phương trình (*) ta có:

3 < 2x – 1 < 8

3 + 1 < 2x < 8 + 1

4 < 2x < 9

2 < x < .

Vì x ℕ nên ta nhận giá trị x = 3 và x = 4.

Vậy m = 8 thì A = {3; 4}.

Vậy m = 5 thì B là tập hợp rỗng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B.

Ta có:

+ Các ước là số tự nhiên của 20 là: 1; 2; 4; 5; 10; 20.

+ Các ước là số tự nhiên của 40 là: 1; 2; 4; 5; 8; 10; 20; 40.

Do đó các ước chung là số tự nhiên của 20 và 40 là 1; 2; 4; 5; 10; 20.

E = {1; 2; 4; 5; 10; 20}.

Vì vậy tập hợp E gồm có 6 phần tử.

Vậy n(E) = 6.

Lời giải

Đáp án đúng là: A.

Xét phương trình x2 + ax + 3 = 0 (*).

A. Thay a = 4 vào phương trình (*) ta có:

x2 4x + 3 = 0 x=1x=3 .

Vì x ℤ nên hai nghiệm trên đều thỏa mãn.

Vậy A = {1; 3}.

B. Thay a = – 5 vào phương trình (*) ta có:

x2 – 5x + 3 = 0 x=5+132x=5132 .

Vì x ℤ nên không có nghiệm nào thỏa mãn.

Vậy B = .

C. Thay a = – 6 vào phương trình (*) ta có:

x2 – 6x + 3 = 0 x=3+6x=36 .

Vì x ℤ nên không có nghiệm nào thỏa mãn.

Vậy C = .

D. Thay a = – 7 vào phương trình (*) ta có:

x2 – 7x + 3 = 0 x=7+372x=7372 .

Vì x ℤ nên không có nghiệm nào thỏa mãn.

Vậy D = .

Vậy khi a = – 4 thì tập hợp A không phải là tập hợp rỗng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Trong các tập hợp sau đây, tập hợp nào là tập hợp rỗng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Trong các tập hợp sau, tập hợp nào không phải là tập hợp rỗng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay