Câu hỏi:

08/08/2022 915 Lưu

Cho định lý sau: “Nếu một số tự nhiên chỉ chia hết cho 1 và chính nó thì số đó là số nguyên tố”.

Phát biểu định lý trên dưới dạng điều kiện đủ.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B.

Ta có:

P: “ Nếu một số tự nhiên chỉ chia hết cho 1 và chính nó”.

Q: “Số đó là số nguyên tố”.

Ta thấy định lý trên có dạng P Q có thể được phát biểu dưới dạng điều kiện đủ như sau:

P là điều kiện đủ để có Q.

Do đó định lý đã cho được phát biểu dưới dạng điều kiện đủ là:

Một số tự nhiên chỉ chia hết cho 1 và chính nó là điều kiện đủ để số đó là số nguyên tố.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: C.

Ta có:

P: “Hai tam giác bằng nhau”.

Q: “Hai tam giác đó đồng dạng”.

Ta thấy định lý trên có dạng P Q có thể được phát biểu dưới dạng điều kiện cần như sau:

Q là điều kiện cần để có P.

Do đó định lý đã cho được phát biểu dưới dạng điều kiện cần là:

Hai tam giác đồng dạng là điều kiện cần để hai tam giác đó bằng nhau.

Câu 2

Lời giải

Đáp án đúng là: A.

Xét mệnh đề “Một tam giác là tam giác đều thì tam giác đó có ba đường phân giác bằng nhau” ta có:

P: “Một tam giác là tam giác đều”

Q: “Tam giác đó có ba đường phân giác bằng nhau”

Định lý đảo Q P của định lý trên được phát biểu như sau:

“Một tam giác có ba đường phân giác bằng nhau thì tam giác đó là tam giác đều”.

Xét định lý đảo trên ta có :

A: “Một tam giác có ba đường phân giác bằng nhau”.

B: “Tam giác đó là tam giác đều”.

Ta thấy định lý trên có dạng A B có thể được phát biểu dưới dạng điều kiện cần như sau:

B là điều kiện cần để có A.

Do đó định lý đã cho được phát biểu dưới dạng điều kiện cần là:

“Một tam giác là tam giác đều là điều kiện cần để tam giác đó có ba đường phân giác bằng nhau”.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP