Cho định lý sau: “Nếu tam giác có hai góc bằng 45° thì tam giác đó là tam giác vuông cân”.
Cho biết giả thiết, kết luận của định lý trên.
Cho định lý sau: “Nếu tam giác có hai góc bằng 45° thì tam giác đó là tam giác vuông cân”.
Cho biết giả thiết, kết luận của định lý trên.
A. “Tam giác có hai góc bằng 45°” là giả thiết, “tam giác đó là tam giác vuông cân” là kết luận của định lý;
B. “Tam giác có hai góc bằng 45°” và “tam giác đó là tam giác vuông cân” đều là kết luận của định lý;
C. “Tam giác có hai góc bằng 45°” và “tam giác đó là tam giác vuông cân” đều là giả thiết của định lý;
D. “Tam giác có hai góc bằng 45°” là kết luận, “tam giác đó là tam giác vuông cân” là giả thiết của định lý.
Quảng cáo
Trả lời:

Đáp án đúng là: A.
Theo lý thuyết, cho định lý P ⇒ Q.
Khi đó P là giả thiết, Q là kết luận.
Ta có:
P: “Tam giác có hai góc bằng 45°”.
Q: “Tam giác đó là tam giác vuông cân”.
Do đó “Tam giác có hai góc bằng 45°” là giả thiết, “Tam giác đó là tam giác vuông cân” là kết luận của định lý.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. Hai tam giác bằng nhau kéo theo hai tam giác đó đồng dạng;
B. Hai tam giác bằng nhau là điều kiện cần để hai tam giác đó đồng dạng;
C. Hai tam giác đồng dạng là điều kiện cần để hai tam giác đó bằng nhau;
D. Hai tam giác bằng nhau tương đương với hai tam giác đó đồng dạng.
Lời giải
Đáp án đúng là: C.
Ta có:
P: “Hai tam giác bằng nhau”.
Q: “Hai tam giác đó đồng dạng”.
Ta thấy định lý trên có dạng P ⇒ Q có thể được phát biểu dưới dạng điều kiện cần như sau:
Q là điều kiện cần để có P.
Do đó định lý đã cho được phát biểu dưới dạng điều kiện cần là:
Hai tam giác đồng dạng là điều kiện cần để hai tam giác đó bằng nhau.
Câu 2
A. Một tam giác là tam giác đều là điều kiện cần để tam giác đó có ba đường phân giác bằng nhau;
B. Một tam giác có ba đường phân giác bằng nhau là điều kiện cần để tam giác đó là tam giác đều;
C. Một tam giác là tam giác đều khi và chỉ khi tam giác đó có ba đường phân giác bằng nhau;
D. Một tam giác là tam giác đều là điều kiện cần và đủ để tam giác đó có ba đường phân giác bằng nhau.
Lời giải
Đáp án đúng là: A.
Xét mệnh đề “Một tam giác là tam giác đều thì tam giác đó có ba đường phân giác bằng nhau” ta có:
P: “Một tam giác là tam giác đều”
Q: “Tam giác đó có ba đường phân giác bằng nhau”
Định lý đảo Q ⇒ P của định lý trên được phát biểu như sau:
“Một tam giác có ba đường phân giác bằng nhau thì tam giác đó là tam giác đều”.
Xét định lý đảo trên ta có :
A: “Một tam giác có ba đường phân giác bằng nhau”.
B: “Tam giác đó là tam giác đều”.
Ta thấy định lý trên có dạng A ⇒ B có thể được phát biểu dưới dạng điều kiện cần như sau:
B là điều kiện cần để có A.
Do đó định lý đã cho được phát biểu dưới dạng điều kiện cần là:
“Một tam giác là tam giác đều là điều kiện cần để tam giác đó có ba đường phân giác bằng nhau”.
Câu 3
A. Một số tự nhiên chỉ chia hết cho 1 và chính nó khi và chỉ khi số đó là số nguyên tố;
B. Một số tự nhiên chỉ chia hết cho 1 và chính nó là điều kiện đủ để số đó là số nguyên tố;
C. Một số tự nhiên là số nguyên tố là điều kiện đủ để số đó chia hết cho 1 và chính nó;
D. Điều kiện cần và đủ để một số tự nhiên chỉ chia hết cho 1 và chính nó là số đó là số nguyên tố.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. Mỗi số nguyên a, b chia hết cho 7 tương đương với tổng các bình phương của chúng chia hết cho 7;
B. Mỗi số nguyên a, b chia hết cho 7 là điều kiện đủ để tổng các bình phương của chúng chia hết cho 7;
C. Tổng bình phương của hai số nguyên a, b chia hết cho 7 là điều kiện đủ để mỗi số nguyên đó chia hết cho 7;
D. Mỗi số nguyên a, b chia hết cho 7 kéo theo tổng các bình phương của chúng chia hết cho 7.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. “Hai tam giác bằng nhau” và “diện tích của chúng bằng nhau” đều là giả thiết của định lý;
B. “Hai tam giác bằng nhau” và “diện tích của chúng bằng nhau” đều là kết luận của định lý;
C. “Hai tam giác bằng nhau” là giả thiết, “diện tích của chúng bằng nhau” là kết luận của định lý;
D. “Hai tam giác bằng nhau” là kết luận, “diện tích của chúng bằng nhau” là giả thiết của định lý.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. Trong một mặt phẳng, hai đường thẳng phân biệt cùng song song với đường thẳng thứ 3 là điều kiện cần để hai đường thẳng đó song song với nhau;
B. Trong một mặt phẳng, hai đường thẳng phân biệt cùng song song với đường thẳng thứ 3 tương đương với để hai đường thẳng đó song song với nhau;
C. Trong một mặt phẳng, hai đường thẳng phân biệt song song với nhau là điều kiện đủ để hai đường thẳng đó cùng song song với đường thẳng thứ 3;
D. Trong một mặt phẳng, hai đường thẳng phân biệt cùng song song với đường thẳng thứ 3 là điều kiện đủ để hai đường thẳng đó song song với nhau.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.