Câu hỏi:

08/08/2022 465

Cho mệnh đề sau: “Trong một mặt phẳng, nếu hai đường thẳng phân biệt cùng song song với đường thẳng thứ 3 thì hai đường thẳng đó song song với nhau”.

Đáp án nào dưới đây là cách viết khác với mệnh đề đã cho?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D.

Xét mệnh đề “Trong một mặt phẳng, nếu hai đường thẳng phân biệt cùng song song với đường thẳng thứ 3 thì hai đường thẳng đó song song với nhau” ta có:

P: “Trong một mặt phẳng, hai đường thẳng phân biệt cùng song song với đường thẳng thứ 3”.

Q: “Hai đường thẳng đó song song với nhau”.

Ta thấy mệnh đề trên có dạng P Q có thể được phát biểu dưới dạng điều kiện cần, điều kiện đủ như sau:

+ P là điều kiện đủ để có Q.

+ Q là điều kiện cần để có P.

Do đó định lý đã cho được phát biểu dưới dạng điều kiện cần, điều kiện đủ lần lượt là:

+ Trong một mặt phẳng, hai đường thẳng phân biệt cùng song song với đường thẳng thứ 3 là điều kiện đủ để hai đường thẳng đó song song với nhau.

+ Trong một mặt phẳng, hai đường thẳng phân biệt song song với nhau là điều kiện cần để hai đường thẳng đó cùng song song với đường thẳng thứ 3.

Đối chiếu với các đáp án trên, ta thấy mệnh đề ở đáp án D là một cách viết khác của mệnh đề đã cho.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho định lý sau: “Nếu hai tam giác bằng nhau thì hai tam giác đó đồng dạng”.

Phát biểu định lý trên dưới dạng điều kiện cần.

Xem đáp án » 08/08/2022 1,841

Câu 2:

Cho định lý sau: “Một tam giác là tam giác đều thì tam giác đó có ba đường phân giác bằng nhau”.

Phát biểu định lý đảo của định lý trên dưới dạng điều kiện cần.

Xem đáp án » 08/08/2022 938

Câu 3:

Cho định lý sau: “Hai tam giác bằng nhau thì diện tích của chúng bằng nhau”.

Cho biết giả thiết, kết luận của định lý trên.

Xem đáp án » 08/08/2022 873

Câu 4:

Cho định lý sau: “Nếu mỗi số nguyên a, b chia hết cho 7 thì tổng các bình phương của chúng chia hết cho 7”.

Phát biểu định lý đảo của định lý trên dưới dạng điều kiện đủ.

Xem đáp án » 08/08/2022 784

Câu 5:

Cho định lý sau: “Nếu tam giác có hai góc bằng 45° thì tam giác đó là tam giác vuông cân”.

Cho biết giả thiết, kết luận của định lý trên.

Xem đáp án » 08/08/2022 625

Câu 6:

Cho mệnh đề sau: “Nếu x là một số nguyên tố lớn hơn 3 thì x2 + 20 là một hợp số (tức là số có ước khác 1 và chính nó)”.

Đáp án nào dưới đây là cách viết khác với mệnh đề đã cho?

Xem đáp án » 08/08/2022 421

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store