Câu hỏi:

08/08/2022 819 Lưu

Cho tam giác ABC có a = 5, b = 7, cos C = 0,6. Tính diện tích tam giác ABC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: A.

Theo định lí côsin ta có: \({c^2} = {a^2} + {b^2} - 2ab\cos C = {5^2} + {7^2} - 2.5.7.0,6 = 32\)

Do đó: c = 4\(\sqrt 2 \).

Nửa chu vi tam giác ABC là: p = \(\frac{1}{2}\)(a + b + c) = 6 + 2\(\sqrt 2 \).

Vậy diện tích tam giác ABC là:

S = \(\sqrt {p\left( {p - a} \right)\left( {p - b} \right)\left( {p - c} \right)} \)= 14.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải:

Đáp án đúng là: B.

Media VietJack

Diện tích tam giác ABC là: S = \(\frac{1}{2}\)AB.AC sinABC = \(\frac{1}{2}.a.2a.\sin 60^\circ \) = \(\frac{{{a^2}\sqrt 3 }}{2}\).

Do đó diện tích hình bình hành ABCD là: \({S_{ABCD}}\)= 2S = \({a^2}\sqrt 3 \).

Lời giải

Hướng dẫn giải:

Đáp án đúng là: C.

Trong tam giác ABC có: \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) = 180^\circ - \left( {30^\circ + 75^\circ } \right) = 75^\circ \).

Suy ra tam giác ABC cân tại A, suy ra AB = AC = 5.

Do đó diện tích tam giác ABC là: \(S = \frac{1}{2}.AB.AC.\sin A = \frac{1}{2}.5.5.\sin 30^\circ = \frac{{25}}{4}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP