Câu hỏi:

08/08/2022 10,247

Để xác định chiều cao của một tòa tháp mà không cần lên đỉnh của tòa nhà người ta làm như sau: đặt giác kế thẳng đứng cách chân tháp một khoảng AB = 55 m, chiều cao của giác kế là OA = 2 m.

Quay thanh giác kế sao cho khi ngắm theo thanh ta nhìn thấy đỉnh C của tháp. Đọc trên giác kế số đo góc \(\widehat {COD} = 60^\circ \).

Media VietJack

Chiều cao của ngọn tháo gần nhất với giá trị nào sau đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Đáp án đúng là: C.

Xét tam giác OCD vuông tại D có OD = AB = 55 (m); \(\widehat {COD} = 60^\circ \)

Nên CD = OD. tan\(\widehat {COD}\) = 55\(\sqrt 3 \)≈ 95,26 (m).

Vậy chiều cao của tháp là: 95,26 + 2 = 97,26 (m).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Đáp án đúng là: D.

Ta có:

\(\widehat {MNB} = 180^\circ - \widehat {BNA} = 135^\circ \)\( \Rightarrow \widehat {MBN} = 180^\circ - \widehat {BNM} - \widehat {BMN} = 15^\circ \)

Áp dụng định lí sin vào tam giác BMN ta có:

\(\frac{{MN}}{{\sin \widehat {MBN}}} = \frac{{BN}}{{\sin \widehat {BMN}}}\)\( \Rightarrow BN = \sin \widehat {BMN}.\frac{{MN}}{{\sin \widehat {MBN}}}\) ≈ 965,92 (m)

Xét tam giác BNA vuông tại A có:  AB = BN. sin \(\widehat {BNA}\) ≈ 683 (m).

Lời giải

Hướng dẫn giải:

Đáp án đúng là: C.

Ta có: \(\widehat {ACD} = 180^\circ - \alpha = 122^\circ \)\( \Rightarrow \widehat {CAD} = 180^\circ - \widehat {ACD} - \widehat {ADC} = 11^\circ \).

Theo định lý sin trong tam giác ADC ta có: \(\frac{{AC}}{{\sin \widehat {CDA}}} = \frac{{CD}}{{\sin \widehat {CAD}}}\)

\( \Rightarrow \)AC = \(\frac{{CD.\sin \widehat {CDA}}}{{\sin \widehat {CAD}}}\)≈ 76,66 m.

Trong tam giác ABC có: \(\frac{{AB}}{{\sin \widehat {ACB}}} = \frac{{AC}}{{\sin \widehat {ABC}}}\)

\( \Rightarrow \)AB = \(\frac{{AC.\sin \widehat {ACB}}}{{\sin \widehat {ABC}}}\) ≈\(\frac{{76,66.\sin 58^\circ }}{{\sin 90^\circ }}\) ≈ 65 m.

Vậy chiều cao của tháp là 65 m.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP